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Abstract

Timely identification of color-producing agents (&%) in Lake Erie is a challenging, but vital
aspect of monitoring Harmful Algal Blooms (HABsi. particular, HABs that include large
amounts of cyanobacteria (CyanoHABS) can be taxtwumans, posing a threat to drinking
water, in addition to recreational and economicafdeake Erie. The optical signal of Lake Erie
is complex (Becker et al., 2009; Moore et al., 201ypically comprised of phytoplankton,
cyanobacteria, colored dissolved organic matter@®I), detritus, and terrigenous inorganic
particles, varying in composition both spatiallydgemporally. The Kent State University (KSU)
spectral decomposition method effectively partsi@PAs using a varimax-rotated, principal
component analysis (VPCA) of visible reflectancectm measured using lab, field or satellite
instruments (Ali et al., 2013; Ortiz et al., 202D013). We analyze 2015 imagery acquired by the
Moderate Resolution Imaging Spectroradiometer (M®DRensor and field samples collected
during the early 2015 cyanoHAB season. We identifer primary CPA spectral signatures,
and the spatial distribution of each identified CiAthe reflectance spectra datasets of both the
MODIS and lab-measured water samples. The KSU spelstcomposition method results in
mixtures of specific pigments, pigment degradaparducts, and minerals that describe the
optically complex water. We found very good agreetnietween the KSU VPCA spectral
decomposition results ama situ measurements, indicating that this method may fx@agerful

tool for rapid CyanoHAB monitoring and assessmaraige lakes using instruments that

provide moderate resolution imagery (0.3 to Pkm
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Introduction

Lake Erie is an economic and social resource, gimogimuch of the regional drinking water for
surrounding communities, particularly in Northerhi@ Lake Erie is divided into three basins
(Figure 1A) formed during the last glacial advangkich differ in average depth, due to
bedrock geology (Sly, 1976). The Western Basinakd_Erie (WBLE) extends from the western
coast of the lake to a line drawn from Point Pef@¥,to Lorain, OH, and is the shallowest sub-
basin of Lake Erie. Sandusky Bay, the largest matdasin in Lake Erie, is located along the
southern shore of the western basin. The DetroitNdaumee Rivers are the major rivers that
discharge into the WBLE, while the Sandusky Ritiee, third largest source of fluvial input to
Lake Erie, feeds in via Sandusky Bay. The Maumeemshed, located primarily in Ohio and
Indiana, but which also includes a small portios@iithern Michigan, is dominated by
agricultural activity as is the Sandusky River wsled. Perennial toxic cyanobacterial and
Harmful algal blooms (CyanoHABS) develop during suenmer as lake conditions become
increasingly eutrophic due to nutrient input frdme tivers that feed into Lake Erie (Baker et al.,
2014). The shallow depth, warm water, and inpwgsfculturally-derived nutrients from the
Maumee and Sandusky Rivers combine to create adeaitions for algal and cyanophyte

growth in the Western Basin and Sandusky Bay (ReetlOtten, 2013).

Of specific concern are blooms containing toxicrmyaacteria. The toxin, microcystin, produced
by MicrocystisandPlanktothrix,which flourish in Lake Erie and Sandusky Bay respely,

can cause liver damage, whilgngbya wolleproduces a freshwater analogue of saxitoxin,
which can damage the nervous system (CarmichadBayer, 2016). The Maumee River is the

source of the heavy springtime nutrient loadinth® Western Basin that drives the



predominantlyMicrocystisCyanoHAB; the Sandusky River drives fPlanktothrix CyanoHAB
that forms in Sandusky Bay (Davis et al., 2015;add Michalak, 2017; Kane et al., 2014; Stow
et al., 2015; Watson et al., 2016; Wetzel et 8l03). Significant CyanoHABS have become an
almost yearly occurrence over the last decadegeptieg) serious risks to human and animal
health, and can impart an unpleasant taste andtodibinking water (Becker et al., 2009;
Stumpf et al., 2012). The impact of CyanoHABs anking water supplies was clearly
demonstrated during the water use ban issued bgitthef Toledo, OH on 2 August 2014
(Steffen et al., 2017), when microcystin exceedegl [I*, the safe level as established by the
World Health Organization (WHO). The Toledo munaigater supply was shut down, leaving
nearly 500,000 people without running water foethdays, until the ban ended on 4 August
2014. The shutdown was enforced until lines co@dllsshed and appropriate treatment
measures implemented to prevent the CyanoHAB blihaincontinued to surround the water
intake at the Toledo Crib from further contaminatad the water supply. This situation
highlights that rapid identification of color procing agents (CPASs) that include CyanoHABS in
the lake’s waters is vitally needed to provide tyréata for water management purposes, to
establish recreational use warnings such as bédastrres, and for the detection of CyanoHABs.
In addition to cyanobacteria, other CPAs present imelude other phytoplankton pigments,
colored dissolved organic matter (CDOM), phytodes; and terrigenous inorganic particles, all
contributing to the complexity of the optical sijriBhe need for effective analysis methods to
distinguish between CPAs is emphasized by the aiitids in optical characteristics of some of

these CPAs.

Remote Sensing of CyanoHABs



Historically, the optical complexity of Lake Eri@$imade remote sensing applications
challenging (Ali et al., 2013; Ali and Ortiz, 201Becker et al., 2009; Moore et al., 2017; Ortiz
et al., 2013; Witter et al., 2009). One aspechd thallenge is that both cyanobacteria and other
phytoplankton contain chlorophyl(hereafter, chl a), making that primary pigmens légn

ideal for distinguishing between potentially toklganoHABs and nuisance blooms. To address
that challenge, we focus on identification of atds well as accessory pigments that distinguish
algal and cyanobacterial groups. In addition, usitypes of sediment as well as CDOM have
been shown to have unique spectral characteratidsan be identified by spectroscopic
analysis (Balsam and Deaton, 1996; Clark, 1995k@aal., 2003; Deaton and Balsam, 1991,
Menken et al., 2006). To identify the mixtures d?A> present, we apply the Kent State
University (KSU) spectral decomposition method {12011, Ortiz et al., 2013), which uses
varimax-rotated, principal component analysis (VB @Adifferentiate constituents based on

their spectral characteristics (Davis, 1986; Kai$668).

VPCA spectral decomposition

Principal component analysis is a dimensional redactatistical tool that reduces a
multivariate dataset to a few independent princgoehponents. This method is ideal for
analyzing highly correlated data as well as sepaydbhe environmental signal from the noise
present in multivariate datasets, such as refleetapectra obtained from optically complex
waters (Ortiz et al., this issue, 2017, 2013)his aipplication, the VPCA functions as a data-
adaptive filtering and unsupervised, soft, clasatibn system (Romero et al., 2016; Singh,

1989; Xia et al., 2014).



A VPCA of the visible spectrum (400-700 nm) frone tiledium Resolution Imaging
Spectrometer (MERIS) sensor has produced excebentts in detection of chl a concentrations
(Ali et al., 2014), leading to an effective metHod discriminating between various CPAs in
optically complex waters. All reflectance bandsha visible are highly correlated, which
requires use of some method to deconvolute spesityrals (Ortiz et al., this issue, 2017, 2013).
While MERIS ceased operations in 2012, the spebtmatls of the MODIS instruments are also
suitable for detection of HABs in Lake Erie, pantarly by spectral shape decomposition
methods like VPCA that work based on the corretesisucture of the data set (Ortiz et al., this
issue, 2017, 2013). Furthermore, MODIS imageryl®es successfully used in various
algorithms focused on detection of CyanoHABs armeneal of chl a (Becker et al., 2009;
Binding et al., 2012; Shuchman et al., 2006, 2@@mpf et al., 2016; Wynne et al., 2013, 2010;

Witter et al., 2009). This previous work providexckground and motivation for our study.

MODIS sensors

Complementary MODIS sensors are currently orbiingoard the NASA Agua and Terra
satellites. Our dataset is comprised of imagesieadjpy MODIS Aqua. The Aqua satellite is on
the ascending node, acquiring data at 1:30 pm touoal This sensor provides daily imagery
sampled around the entire Earth and data is fieeedytable within hours of data acquisition.
MODIS bands 8-14 have a high signal to noise @MR > 750), and are used in our analysis
(NASA MODIS specifications: https://modis.gsfc.nagav/about/specifications.php). Bands 1-4,
designed for Land/Cloud/Aerosol Boundary detectiohile also within the VNIR region of

interest, have lower SNR (<250), which makes thess kuitable for our purpose in comparison



to the higher SNR bands. The MODIS instruments kageund resolution of 1 Kiwhich is

adequate for study of large water bodies like LBke.

2015 spring meteorological conditions

According to the National Oceanic and Atmospheritmnistration (NOAA) National Center

for Environmental Information, 2015 spring precpion in Indiana and Ohio was average to
above average in March, April, and May, 2015. 20&5 was a record wettest month for both
states, based on average precipitation recordbdégoeriod of 1895-2017
(https://lwww.ncdc.noaa.gov/temp-and-precip/us-map#is intense precipitation caused a peak
discharge of 2806 frs* from the Maumee River on 30 June 2015, recordétS&S gauge
#04193500 located in Waterville, OH just upstredrmaedo, OH (National Water Information
System https://waterdata.usgs.gov/nwis). As a te$uhe spring discharge, the WBLE had high
levels of suspended sediment through June and &aslyfrequently re-suspended by strong
winds associated with storms during the springipi&tion season. The discharge contributed to
high nutrient loading, but delayed bloom conditiol® to sediment turbidity and thus, low light
conditions (Ho and Michalak, 2017; Watson et 81&). The suspended sediment is visible in

the MODIS imagery from this time, contributing teetcomplexity of the optical signal.

Project Objectives

The multi-faceted problem of CyanoHAB occurrencéake Erie, and the challenge of
identifying in-water constituents in a timely fashj defines the purpose of this study. We are
interested in providing a methodology to aid inidhpdetermining the composition of CPAs in

Lake Erie, and their distribution at times in theay before conventional remote sensing methods



can be applied (due to the presence of mixed sjesignatures). This will allow earlier incipient
bloom identification at lower detection limits. Tlat end, this study brings together remote
sensing anth situfield datasets for analysis and comparison. Hexg@resenin situfield and
lab-filtered data for comparison with near-concotfODIS imagery. The lab-filtered water
samples were collected by KSU, while thesitufield measurements were collected by the
Cooperative Institute for Great Lakes Research [R);a multi-institution collaborative
affiliated with NOAA Great Lakes Environmental Rasgh Laboratory (NOAA-GLERL). Four
reasonably cloud-free images were acquired by MO&Y&a on 21, 23, 27, & 28 July 2015.
These images span a 1 — week time period, and ¢gsmir remote sensing dataset which
documents the inception of the bloom in mid-Julyegsorted by the NOAA HAB Bulletin. The
HAB Bulletin, using the NOAA-CI algorithm (Wynne at., 2013), is produced by NOAA CO-
OPS, and provides information on current and ptedi€yanoHAB locations (Lake Erie HAB-
OFS Bulletin Guide
https://tidesandcurrents.noaa.gov/hab/hab_pubbicdtake Erie HAB_Bulletin_Guide.pdf).
We decompose the reflectance spectra of both reseotEng data and lab-measured field
samples collected by KSU to extract the primary ponents of the optical reflectance signal.
We then compare our results with the field andntedasurements to validate our analysis. We
find that spectral decomposition of remote sengimggery is a highly effective method for
distinguishing the primary CPA signals in opticallymplex waters, and can be used in
conjunction with well-planned, field sampling cargres to assess CyanoHAB formation and

development.

Methods



Field Data Collection

We collected water samples at 11 locations in SsikdBay and along the coast between Lorain
and Sandusky, OH (Figure 1B, Table 2). These sitge re-visited weekly from 8 June — 2
September 2015. Surface water was collected atstechsing a bucket to skim the surface
(~10-30 cm) and poured into 1 L Nalgene samplddmtihe samples were transported to the
lab on ice, and filtered immediately through a 4m @F/F filter. The lab processing protocol
followed that of Ortiz et al. (2013). These filteetain particulate matter larger than Qv from
the surface water sample, but excludes all CDOhftioe sample. The GF/F filter was then
oven dried, to remove all water from the particelietatter. The samples were then measured
using a benchtop ASD (now Malvern Panaltyical) Laé&SPro FR UV/VIS/NIR spectrometer,
equipped with a high-intensity contact probe, whiels an internal light source of known
properties. This instrument measures reflectarara 850 nm - 2500 nm, at ~4 nm spectral
resolution in the visible and 10 nm in the NIR. &alude any ambient light during
measurement, each GF/F filter was placed on t@poirfcular Spectaldff plate (9 cm diameter)
sitting on a scissors jack, and the instrument @nuls brought into contact with the GF/F filter.
Results are oversampled by the ASD software anattegbat 1 nm resolution to fully
characterize peak position and amplitude. A tot&00 measurements (collected in groups of
30) were averaged to produce a single, high sigrabise (SNR) reflectance spectra for each
GF/F sample. A blank GF/F filter was also measumgtie same manner during each processing
run, to determine the spectral characteristicheffilter paper. We removed the filter signal
from the measured signal by dividing the samplesueament by the blank measurement,
isolating the spectral response of the particutzdéer (Ortiz et al., 2013). The visible part (400-

700 nm) of the measured reflectance spectra weraoctad from the full spectrum and collected



into a single database. We then interpolated thigset from 1 nm spectral resolution to 10 nm
over the spectral range from 400 nm to 700 nmutthér increase the SNR, and to remove the
effect of spectral oversampling by the ASD softwavkile maintaining the hyperspectral nature
of this dataset. We then calculated the centerdwtedy first derivative for each sample. In
addition, the 1 nm resolution spectra were bandemes to replicate MODIS bands 8-14, using
the MODIS bandwidth definitions, and band namingvamtions. The center-weighted, first
derivative of each simulated MODIS-resolution GF¢flectance spectra was calculated for each
sample in the dataset for comparison. The lab neasnts from these field-collected samples
are referred to as the “GF/F samples” throughastghper, and the MODIS resolution GF/F

sample spectra are referred to as @GbHfs.

In situ data was collected by CIGLR from 8 June to 5 OCet@®15 on a nearly weekly basis.
Samples are collected at fixed sampling sites (Eid, Table 3). In addition to Secchi depth,
other parameters measured in the field with a SdaBTD include: temperature, specific
conductivity, beam attenuation, transmissivity, @hphycocyanin, and dissolved oxygen. In
addition, water samples were collected at eachae measured in the CIGLR lab for extracted
phycocyanin, particulate and dissolved microcystimpidity (using a HACH benchtop

turbidimeter), and extracted chlusing a Turner 10AU fluorometer.

MODIS Imagery Data — acquisition and pre-analysisqessing
We obtain all our MODIS imagery from the NASA OceBinlogy Processing Group (OBPG) at
NASA Goddard, which provides MODIS data products] the open-source processing software

SeaDAS, through the Ocean Color Web (https://ocdangsfc.nasa.gov). The remote sensing
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images are obtained as a Level-1 product, and psedeo Level-2 remote sensing reflectance
using SeaDAS, which facilitates further satellisgadprocessing and image analysis. Level 1A
MODIS imagery of Lake Erie and Lake St. Clair acgdiwithin a £3 day window centered on
field campaign dates were downloaded and qualébti@ssessed for cloud cover. While
conditions can change rapidly in Lake Erie, presiawork has shown that images acquired
within £1 day of field sampling campaigns best capthe in-water signal, but that a time lag of
+3 day between samples and imagery is acceptabiee{Band Werdell, 2006; Moses et al.,
2009). For comparisons with field data, valid psxelere extracted from each image that was
closest in time to the sample collection withirsttemporal window. Four reasonably cloud free
(determined by visual inspection, focusing on thesW¥rn Basin) images from the Aqua sensor
were available for 21, 23, 27 & 28 July 2015. Thesages are within +1 day of field sampling
dates. We use only the images acquired by MODISaAquthis study as the images acquired
by Terra on 21 & 23 July 2015 exhibit significatrigng due to a known mirror-side banding
issue (https://mcst.gsfc.nasa.gov/calibration/miside-striping). Removal of the mirror-side

banding as an image pre-processing step is beyenscope of this paper.

The standard SeaDAS processing stream appliesea séicorrections to the L1 radiance values
of bands 1, 3, 4, 8 — 14 (visible light range) ®bdurface reflectance values, with an approximate
range of values from -0.015 to 0.115 sr
(https://oceancolor.gsfc.nasa.gov/docs/format/Oceavel-2_Data_Products.pdf); this process
also provides geophysical parameter flags. Thesftagvide information on pixel quality, and
create land and cloud masks for each image (hefuatahttps://seadas.gsfc.nasa.gov/help/).

The atmospheric correction step, accounts for ffeeteof the atmosphere on the signal received

11



by the sensor. MODIS, as with all satellite bassassrs, measure the total radiance at the top of
the atmosphere (I°#). The total measured radiance is a combinatidghefvater-leaving

radiance of interest with reflected radiance friwa $urface of the water, atmospheric scattering
due to aerosols and atmospheric gasses such as, ¢ktwbley et al, 2016). The contributions to
the TOA radiance measurements by factors otherwaader-leaving radiance must be estimated
and subtracted from the measurement (Franz &0l7; Gordon, 1997; Wang and Bailey,

2001). The various atmospheric contributions afle@mced by atmospheric conditions such as
the amount and type of aerosols, relative humidityl particulate matter present, as well as by
the angle of the sun and the viewing angle of tiserument. The atmospheric correction process

is a step-wise algorithm that assesses the conditrowhich each image was acquired.

The calculations for these steps that the OBPGO&8& implements as standard processing
protocol are described in Mobley et al (2016). Ehsteps include correction for gas absorption,
correction for polarization, a removal of foam eeflance, correction for Rayleigh scattering, sun
glint removal, and aerosol correction. The corr@d®A radiance measurement is then
transformed to a normalized water-leaving radiaAceassessment is then made to determine if
the near-infrared (NIR) values have changed sicguifily from the measured TOA radiance. If
this change is large, the algorithm iterates thihotlg sun glint removal, aerosol removal, and
normalization steps until the change in NIR radeiscsmall. Then a correction is applied to
remove any measurement of radiance outside eachduodl bandwidth, called an ‘out-of-band’

correction (Mobley et al, 2016).

12



The last step in the OBPG atmospheric correctighadidirectional reflectance distribution
function (BRDF) effect correction (Mobley et al,18). The BRDF effect is the effect of sky
radiance distribution, viewing geometry, and wafgtical properties on upwelling radiance
distribution. The key aspect of this correctiothie water optical properties. These properties are
largely dependent on the amount of chl a in theewyaind the standard BRDF correction is based
on Case 1 water body models with a known chl a eotnation (Mobley et al, 2016). Case 1
water bodies, typically oceans, are those in whhdra concentration is the dominant factor
affecting in-water scattering (Morel and Prieur7I® This step, along with the use of the NIR
bands as an assessment of sun glint and aerosoVa&motentially introduces error into the
OBPG level 2 products for optically complex, turlbmhstal environments such as Lake Erie
because the scattering is due to multiple faciidns. reflectivity of turbid, high chl a waters is
non-negligible in the NIR, making those bands k&sctive for removing the effects of the
atmosphere (Shi and Wang, 2009; Siegel et al., 200@ challenge of effective atmospheric
correction for turbid, coastal waters is an ongdoaus of research (e.g. Hu et al., 2000;

Ruddick et al., 2000), although recently the depeient of algorithms using the SWIR bands

have been successful (Wang and Gordon, 2018; Wah&li, 2007).

The SeaDAS level 2 processing tool allows for défe options in the processing stream. One of
the options is a cloud mask threshold that is HABc#ic for coastal, optically complex waters,
and is suitable for use in Lake Erie (Urquhartlet2®17; Sean Bailey, NASA OBPG, personal
communication, 2017)

https://oceancolor.gsfc.nasa.gov/forum/oceancalpic¢t show.pl?pid=28087). This same cloud

mask threshold is employed with the NOAA CI (Wyrama Stumpf, 2015; Sean Bailey, NASA
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OBPG, personal communication, 2017)
https://oceancolor.gsfc.nasa.gov/forum/oceancalpict show.pl?pid=28087). The shallow
nearshore, sediment laden, turbid water of the WB&Ses the standard Ocean Color cloud
mask algorithm to flag pixels with high reflectanadues, typically associated with sediment or
HABs, as clouds. Use of a standard OceanColor nvasikd have resulted in an underestimation
of valid data pixels in the image (Banks and Mé&i@15; Wang and Shi, 2006). Using the HAB
specific cloud mask SeaDAS processor reduces tmbauof valid pixels that would have been
inaccurately flagged as clouds. A first-look tesiswun on the 28 July 2015 MODIS image,
using the standard processing protocol, the stdnatacessing protocol with the HAB-specific
cloud mask, and with the atmospheric option usMgFSinstead of NIR bands, and the HAB-
specific cloud mask. The results indicate thatH#&-specific cloud mask improves the
retrieval of water pixels in the image, but tharehis no difference between the standard
atmospheric correction and the SWIR-based optiberdfore, the standard OBPG parameters
were used for the atmospheric correction routinel{ldy et al, 2016), including the standard
NIR band value check, with the HAB-specific cloudsk option enabled. This also allows a
more direct comparison with the NOAA CI product elhused the same cloud masking option.
After processing to Level 2 products, the imagersevgeo-rectified and cropped to isolate Lake

Erie, using SeaDAS tools.

VPCA Spectral Decomposition
Varimax-rotated, principal component analysis (VB@an eigenvalue-eigenvector based
statistical matrix rotation procedure that maxirsitiee variance within a dataset along

orthogonal axes, and reduces dimensionality of livatate dataset. The resultant eigenvectors
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describe the direction of the new axes, and thensiglues describe the length of the axes, or
how much signal variance is associated with thggreiector. The eigenvector-eigenvalue pairs
are the VPCA components. The longest eigenveatorsgsponding to the largest eigenvalues,
are retained. Noise is partitioned into the trgildomponents, referred to as the noise floor, and
discarded. When we apply this method to remoteisgmsagery, the input variables are the
wavelength bands, while the input samples arerttagé pixels. The components are orthogonal,
and therefore independent of each other, whichesdes any correlation between sensor
wavelength bands (Davis, 1986). The varimax rotat@ximizes the differences between the
small and large component loadings, which vary fametion of wavelength, simplifying the
spectral shape functions, while maintaining orthradity, which aids in the interpretation of the
spectral shapes (Kaiser, 1958). The resultant VE@Aponent loadings describe the spectral
signature of the in-water color producing agenpsasented by that component while the
component scores describe the spatial distributiegach component. The VPCA method was
applied to each image separately. The spectrahgiges from each separate image were grouped
into patterns based on their extracted spectrgeshécomponent loadings). The spectral
signatures from each of the images in a patterogveere then averaged to produce an average
spectral signature pattern. The identificationnafividual image spectral signatures and the
average pattern signature were very similar althaugable differences in identification are

discussed below.

Each VPCA component loading (spectral signaturd)aarerage of spectral signature, is

identified using a library of known reflectance igative spectra of water quality constituents

(Table 1), which includes 44 algal & cyanobactepigiments, accessory pigments and
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chlorophyll degradation products, compiled from litexature (Ortiz et al., this issue, 2013 and
references therein), and using mineral spectra frenUnited States Geological Survey (USGS)
Spectral Library (Clark, 1995; Kokaly et al., 20bf)measured in the lab (Ortiz et al., this issue,
2013). This identification process — employed vatth the MODIS and the filtered GF/F
sample spectra uses a stepwise, forward multipdatiregression of the component loading
against known standardized spectra, a form of paicomponent regression. The Variance
Inflation Factor (VIF) is used to ensure that tegressions do not exhibit multicollinearity

(Ortiz, et al, and references therein, this isst#)is forward, stepwise, multiple linear
regression creates a null model and adds and reswaviables until the match is optimized
(Ortiz et al., this issue, 2017, 2013). In thisgesaeach variable is a standard spectra from the
library. This can result in a VPCA spectral sigmatulentified as a mixture of pigments,
minerals or degradation products; however, thisadasonable within this complex environment
and is determined by the correlation structurénefdata set. The spectral library is hyperspectral
at 10 nm resolution from 400-700 nm. For this stwdy resampled the library to MODIS
resolution, based on the bandwidth of each MODI&Ibbhefore the identification analysis was

performed.

Relevant examples of the differences between tiggnat, hyperspectral library spectra and the
multispectral MODIS resolution spectra are showfigare 2 for three categories of in-water
constituents: the dinoflagellate accessory pigrpentdinin and the cyanobacterial accessory
pigment myxoxanthophyll (figure 2A); geothite, hditea& smectite minerals (figure 2B); and
chla and its degradation products (figure 2C). Theddash spectra for peridinin and for

myxoxanthophyll are shown in figure 2A. When thepectra are resampled to MODIS band
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resolution, the distinguishing peaks at 500 nm, mh0Q and 520 nm are muted, and the spectra
for the pigments become similar, highlighting ori¢he limitations of multispectral instruments
relative to hyperspectral ones. In particular, tbss of reflectance peak amplitude and structure
is particularly accentuated in data from coarselw®n, multispectral instruments, where gaps
exist in the visible spectrum due to band placerdentsions implemented during instrument

design.

The standard spectra for minerals can be distihgdi®ecause the derivative spectra exhibit
different peaks (Figure 2B). In particular, the stite derivative spectrum is higher in the blue
range (400 nm — 450 nm) and then decreases towsrded wavelengths (600 nm) before
leveling off from 600 nm — 650 nm. In contrast, teFivative spectra of goethite and hematite
are low in the blue end, and then increase to & @850 nm — 570 nm for goethite and at 570
nm — 590 nm for hematite. Goethite and hematitesindar at MODIS resolution, but goethite
has a lower trough at 670 nm than hematite (fi@B¥and a secondary peak at 440 nm, which is

absent from the hematite spectrum.

The derivative spectra of chland the three cld degradation products are shown in Figure 2C.
These derivative spectra are similar, with a legsponse between 580 nm & 670 nm, increasing
at 680 nm, although the depth and width of theghoand peak between 650 nm and 700 nm
differ for the three constituents. Phaeophgtiend phaeophorbidehave a higher response in

the blue wavelengths (410 nm), while chlorophylizddeas a lower response at 410 nm. The
peaks in the chd derivative spectra reside at 450 nm & 680 nm en1@ nm resolution spectra,

offset from the peaks in the phaeophortadend phaeophytia degradation products, but are
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similar in placement to peaks in the chlorophyligd@erivative spectra. At 10 nm resolution, the
relative amplitude of the peaks on the blue ancerets of the spectra differ as do their relative
placement, helping to differentiate these compodraia each other when conducting a whole
waveform decomposition. However, at multispectr@®MS resolution, the ctd spectrum is
similar to the chlorophyllida spectrum, except for a higher response at 665/i@ling some
ambiguity in differentiating these two constituenitee similarity of these derivative spectra
indicate some ambiguity in differentiating chl arfr chlorophyllidea and in differentiating
phaeophytira and phaeophorbidefrom each other. Notice that algorithms based ordba
centered only on the red edge would have even diffireulty differentiating between chl a,

chlorophyllidea, phaeophytira and phaeophorbide

Field Data VPCA

As with the remote sensing observations, the \@ssipectra measured from the filtered water
samples represent mixed signals that depend ondlyhted average of the collected particulate
matter, and must also be spectrally unmixed. Thabdase of measured GF/F sample reflectance
derivative spectra, band averaged to match MODifslwalths, was analyzed with varimax-
rotated, principal component analysis (VPCA) ussRfSS statistics software by IBM. The field
sample data includes 93 samples. Each row in tteesgd represents a daily sample composed of
a center-weighted, visible reflectance derivatipectrum with the variables (columns) defined at
the center-weighted wavelength of the MODIS baddsyed from the hyperspectral

observations.

MODIS Imagery VPCA
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The reflectance spectra of all pixels in each efMMODIS images is scaled by multiplying all
Rrs values by a factor of 3,Go avoid very small derivative values for plogjrthen analyzed
using the ENVI function Forward PCA Rotation. Ford/® CA Rotation calculates eigenvectors
and eigenvalues for the dataset of derivative speahd basic statistics, i.e. the standard
deviation, minimum, maximum and mean of the datad®t varimax rotation of the principal

components is carried out in IDL, using in-housd apen source algorithms.

Pixel Extraction in-water data matching

The location of each 2015 field sampling site (€ab) used by CIGLR in the WBLE was
identified in the MODIS Aqua image VPCA componecdre maps from 21, 23, 27, & 28 July
2015, and the pixel value of each of the compogeotes closest to the field sampling location
was extracted. Eight CIGLR station locations wenagsled on 27 July 2015, and each MODIS
image pixel at the sampling locations had valicagptoviding eight data pairs for comparison.
The VPCA score values were regressed againstditedata provided by CIGLR. The critical
Pearson's R-value for 6 degrees of freeddins 6) at the p=0.05 confidence level is R-crit =
0.707. We also extracted the 21 July 2015 MODISjendPCA score at each location where
spectra from filtered KSU GF/F sample measurem&ate most closely collected in time and
space (Table 3). There were eleven sampling laeswigsited on 20 July 2015, and the closest
matching, 21 July 2015, MODIS image had valid datpixels containing seven of those
sampling locations. We regress the GF/F sample VB€Aes against the VPCA scores of
MODIS image pixels at the KSU sampling locationke Tritical Pearson’s R-value for this

dataset is R-crit = 0.754lf(= 5, p=0.05).
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Comparison to NOAA ClI

We constructed an image for comparison to the 8821115 NOAA Cl image by adding each of
the 28 July 2015 MODIS Aqua VPCA spectral decommsicomponents, weighted by the
percent variance explained by each component.rébidted in a single band image that can be
visually compared to the published NOAA Cl imagheTcomponents were added sequentially
until the visual match was optimized. In this cas®28 July 2015, all extracted VPCA

components that included a red edge response natgled in the constructed CI.

Results and discussion

The VPCA spectral decomposition analysis of aladats resulted in four principal components
that fell into distinct loading patterns represegtihe spectral signature of each component, with
associated component spatial distributions. Thesgonents are the result of the VPCA, and

often represent a mixture of individual in-watensttuents.

VPCA Spectral Signature ldentification

The forward, stepwise multiple regression of sp@aignatures against the standard spectral
library resulted in mixtures of pigments as thetlii€$or each component. Figure 3 shows the
spectral signatures of each component extracted fihe GF/F dataset at 10 nm as well as at
MODIS resolution (Figure 3A — 3D) along with thengponents from the four MODIS Aqua
images acquired on 21, 23, 27 & 28 July 2015 (E@E - 3H). The spectral signature of each
MODIS Agua image is averaged by pattern (spechapbs) and shown with the individual image
components. The average pattern is shown withdiretification spectra ‘fit’, which is the

weighted combination of the matched standard spéam the forward stepwise multiple

20



regression (Figure 31 — 3L). VPCA decompositiorihef in-lab measured reflectance spectra
(GF/F dataset) of the water samples collected yiBU field team yielded four primary
components similar to the components extracted treMODIS images. The GF/F spectral
signature averaged to MODIS band resolution (@E#fs; orange) exhibit some differences in
spectral features, but when we regress the (aplE spectral signature against the average
MODIS image spectral signature for each pattemm Rbvalues for patterns A, B, & C are
statistically correlated at p <0.05 (Table 4). ®iere, the GF/F sample component identification
for GF/F sample patterns A, B & C are identicalite MODIS pattern A, B, & C identification,
within error. The GF/F sample spectral pattern @rht correlate significantly with MODIS
spectral pattern D. These spectral patterns werdifted independently as is discussed further

below.

The identification of each VPCA component is oftdrgugh not always, a mixture of pigments,
minerals and degradation products representingwsiin-water constituents. The correlations
may be negative or positive, indicting a positivenegative correlation with that constituent. The
association of each pixel reflectance spectragatimponent spectral signature is described by
the spatial distribution of each component. In ¢hiégures, the red/warm colored pixels increase
with positively correlated constituents, and (ibagable) the blue/cool colored pixels increase

with negatively correlated constituents.

The spectral signature results of the VPCA spedegabmposition of the 10 nm resolution

hyperspectral GF/F sample dataset (blue) is pldttedomparison purposes (figures 3A — 3D).

The hyperspectral nature of the 10 nm GF/F datasebe used to provide additional
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information to validate the identifications detened from the multispectral data. Increased
spectral information provides greater insight fetedmining the CPAs captured by this field
data. However, some distinguishing spectral peaks) as the 620-630 nm absorption of the
cyanobacterial pigment phycocyanin (Bryant, 19&tth$endranath et al., 1987), are lost when
the GF/F 10 nm dataset is resampled to multi-spe®tODIS bands, in particular between 550-

670 nm, were MODIS does not have a high SNR band.

The MODIS spectral signature pattern A (Figure ffpyesents a negative correlation with
hematite and a positive correlation with peridiaimd/or myxoxanthophyll. Peridinin is a
dinoflagellate pigment (Song et al., 1976), whilgxaxanthophyll is a cyanobacterial pigment
(Paerl et al., 1983). The ANOVA results for theward stepwise regression of the average
pattern A spectral signature are shown in TablEh&. average image identified as a combination
of hematite and peridinin, however, the patterrpAcsral signature for the first day in the series,
the 21 July 2015 MODIS Aqua image, is identifiecaasombination of hematite and
myxoxanthophyll (Table 5). This component likelpresents a combination of dinoflagellates,
cyanobacteria, and iron-oxide rich, suspended sadticomprising the CyanoHAB signal. It is
worth noting that dinoflagellates and cyanobactesiggh as’lanktothrix are known to be reside
in the western basin (Watson et al., 2016), arlzetadapted to living in turbid waters (Oberhaus

et al., 2007; Scheffer et al., 1997).

The MODIS image pattern B spectral signature (F@F) represents a mixture of goethite,

smectite, hematite, and phaeophortadée end member chl a degradation product). The

ANOVA results (Table 6) for most of the images &nel average pattern spectral signature
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indicate that a sediment mixture of goethite & stive@re present, while the results for the
earliest day in the series, 21 July 2015, indita¢epresence of hematite and phaeophoraide
This component, therefore is a sediment and phaeblea laden constituent, with a
composition that may vary with time, and suggdstspresence of chl a that has largely

degraded.

Pattern C (Figure 3G) represents a positive cdroelavith hematite and a negative correlation
with the chl adegradation product, chlorophyllidgTable 7). This component is thus comprised
of different sediment and chl a degradation prosititan pattern B. The potential ambiguity in
differentiating chl a from chlorophyllide (Figure 2C) suggests that this component may
indicate the presence of chl a at varying stagekegfadation. Furthermore, the identification of
the pattern C spectral signature was consistensa@ll four images and the average spectral
signature, suggesting that the optical signal frmmatite and chl a degradation products was

not temporally varying throughout the study.

While MODIS pattern D and GHRllopis pattern D are similar in their spectral shape ttheare

not statistically correlated. These componentsesgt a small fraction of the variance in the
MODIS image (1.8%), although a larger percent ofarece in the GF/F samples (14.6%). In
addition to the partitioning of variance of thes® tdatasets, the physical filtering process, which
removes all material smaller than @Quh from the GF/F samples, may explain the differdnce
variance between these last components and tle&iofastatistical correlation. The small

fraction of variance places these components ¢tosige noise floor, and the sparse multispectral

data likely makes their identification more diffittelative to hyperspectral data. MODIS
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pattern D (Figure 3H) represents a positive coti@avith the Cryptophyta algae, a member of
the kingdom Chromista (Algaebase.org; Table 8). GRéRyopis pattern D (Figure 3D)
represents a positive correlation with both heraatitd phaeophytia, a degradation product of
chl a (Table 8). Given the uncertainty in the dhta pattern could represent either of these two
potential identifications. In the section mnsitu validationwe compare the spatial patterns of
these components to see if they are consisterntique in spatial distribution. Given the VPCA
orthogonality constraint, a common spatial patteould suggest these two components
represent the same in-water constituents whileé@uerone would indicate that they are likely

distinct components.

The identification results from patterns A — D sesjgthat the first image in the series, acquired
on 21 July 2015, may represent slightly differemtnthant compositional make-up than the latter
three days, which span the time period from 23 3§, 2015. This is consistent with observed
riverine discharge from the Maumee, Sandusky &@&@Rivers to the WBLE, which were
decreasing during this week - long time periodp@iffwaterdata.usgs.gov/nwis). Some
differences between the results from the Gb#s and MODIS image VPCA spectral
decompositions are to be expected due to severassthe water samples were collected
exclusively in Sandusky Bay and the nearshore watist east of Sandusky Bay in Lake Erie
while the MODIS image analysis includes the reflece signal from the entire Lake. However,
analysis of a subsampled image that matched thgrgelaic distribution of the samples
produced similar results to the full image analysissented here. The field collection dates are
also not identical to the MODIS image acquisiti@tes, but differ by +1 day. Furthermore, the

differences in scale between the MODIS image maehples and the GF/F samples are
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significant in that the GF/F samples representafiltered point sample, with only particulate
matter= 0.7 um captured, and all water removed by the physittatihng and drying process,
while the MODIS pixels represent an integrated aigrom 1 knf of Lake Erie, acquired at a
height of 705 km, with an atmospheric correctioplegul to produce a surface reflectance value.
Due to physical filtration, the GF/F samples do inctude CDOM as a constituent because the
dissolved CDOM is lost during the filtering proce€HOM is an important constituent in the
Great Lakes (Becker et al., 2009; Binding et &12 2008; Moore et al., 2017), and is thus
incorporated in the MODIS reflectance spectra. Hmvedespite all these spatial and temporal
differences, the spectral signatures of the MOMi&ge and the GF/F field dataset are
remarkably similar and statistically significamdicating a consistent CPA presence. The
similarities between the two VPCA spectral decontposresults based on independent
observations from different instruments are remalkebecause the VPCA method removes
extraneous stochastic noise, and partitions umeblsignals into different components based on
their correlation structure. The method is reldyivesensitive to atmospheric errors and

addresses the mixed pixel problem (Ortiz et ais, idsue, 2017, 2013).

In situ validation

The component scores are the projection of theval@re-transformed data onto the principal
component loading axis, and as such provide a measihe amount of signal explained by
each component loading. The component score irediche relationship between each pixel and
the component spectral signature, creating a $psi@ibution for each component. A value of
zero reflects a mean contribution to the derivatefeectance spectra from that component, while

positive or negative values indicate standard dievia greater than or less than the mean of the
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original derivative reflectance spectra for eacimponent spectral signature. We used a simple
linear regression to quantify the relationship wthe 21 July 2015 MODIS image VPCA
score values and the 20 July 2015 GF/F VPCA scalieeg. These two near-concurrent dates
provided the 7 clear pixels in the MODIS image esponding to the KSU sampling locations.
There were no cloud-free pixels available for tiel@ly 2015 image at the KSU sample site
locations, although the image is sufficiently clagpther locations to process. We regressed the
21 July 2015 MODIS score values against the 20206 GF/F score values for each spectral
signature. For these four regressions, R-crit 80 @f =5, p=0.05). Despite the slight temporal
offset, the R-value for pattern A is 0.73; for patt B the R-value is -0.80; for pattern C the R-
value is 0.88; and for pattern D the R-value i¥@Figure 4). These results indicate very good
statistically significant agreement betweenithsitu measurements and remote sensing image
analysis for patterns B, C, & D, and provide coefide that the remote sensing analysis
partitions the in-water reflectance signal as eifety as the analysis of spectra measured in the
lab fromin situwater samples. As noted above, there is some aipig the identification of
pattern D, although the correlation of the spat&iterns for the GF{fopis and MODIS VPCA
scores suggest they represent the same mixtuenefituents. Carefully planned field sampling
campaigns, designed to coordinate with satellierpasses can increase the number of location
matchups used for validation. Newer satelliteshwismaller pixel resolution, such as the
European Space Agency’s (ESA) Sentinel-3A OcearLand Color Instrument (OLCI) (300 m
ground resolution) also have the potential to iaseesample size, particularly if field sites are

located close together.
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Four of the lab-measured parameters collected BLRIon 27 July 2015 for Secchi depth,
beam attenuation, in-water chgland in-water phycocyanin were regressed agdiestPCA
spectral decomposition results of the MODIS Aquagmacquired on 27 July 2015 and found to
yield significant results. We extracted the compurseore values at each CIGLR sampling
location from each component pattern map. The sgesignature results from this individual
image analysis matched the patterns describedqugyi The regression of the eight VPCA
Pattern C score values from 27 July 2015 agaiesCliGLR measured clal values (Figure 5B)
yields an R-value of 0.8&i{=6, p<0.05), indicating statistically significargraement between

the in-water data and remote sensing analysistsggarticularly when the data were collected
on the same day and has closer temporal coincidbaoghe KSU GF/F sample comparisons
presented earlier. However, some of the slightlgkee fit observed to the lab measurements
could also result from the filtration process. Fgy6A maps a close-up of the sampling locations
on the VPCA spatial distribution of pattern C ie tWBLE, which represents a mixture of
hematite and chd degradation products calculated based on datatfierantire lake. These
results show that the two independent sets of nedjiealidation data, the 20 July 2015 GF/F
samples from Sandusky Bay (Figure 4) and the 2725 CIGLR samples (Figure 5) from the
WBLE correlate well with the closest temporal MODihsage match, despite the fact that the
MODIS image VPCA spectral decomposition was corellicin the entire image, which includes
both Lake Erie and Lake St. Clair. These resultsideent the effectiveness of the VPCA
spectral decomposition method to extract signah s chh, despite the range of optical

conditions across the lake.
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The red colors in Figure 5b indicate that the @xelve a higher proportion of sediment than
chlorophyllidea, while the blue colors in Figure 5b indicate psxalhere the mixture is higher in
chlorophyllidea. In all pixels, chlorophyllide contributes to the signature of the VPCA
component, suggesting that chl a is present, @eptan some stage of degradation, given the
potential ambiguity the spectral signature idecdifion as chl a or chlorophyllige(Figure 2C).
The distribution of sampling sites spans a rangecofes nearly equal to the full observed range,
capturing the variability of this component, altgbuntermediate values are somewhat under-
sampled given the static sampling points and tloggghic extent of the component scores on
this date. Despite the limitation of sample sibesk results indicate that VPCA spectral
decomposition results from remote sensing dataigreficantly correlated with the in water

measurements.

GF/F component spatial distribution

Ouir filtered field sample measurements (GF/F sampéetra) indicate that the spatial
distribution of each component changes from dajatn and provides quantitative insights into
the temporal evolution of the CPAs that each comepbrepresents, as well as changes in the
composition of the CyanoHAB over time. The GF/R@att A spectral signature (Figure 6)
represents sediment and the cyanobacterial pigmgxathanthophyll. The hematite signal has a
negative correlation, so negative values in théigpdistribution plots (Figure 6) correspond to
higher than average concentration of hematiteisxabmponent, while the correlation with
myxothanthophyll & peridinin pigments are positizuring the month of June the spatial
distribution of CPA at all sites is varied, highitghg the rapidly changing conditions within a

relatively small range of temporal and spatial sia®plhis month was also exceptionally rainy,
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and the influx of water, sediment, and debris cdwdde delayed the initiation of the 2015
CyanoHAB. On 6 July 2015 there was a large amotisédiment in the water, particularly in
the western end of the Bay near Muddy Creek, argdtighly turbid conditions [9 July 2015
NOAA HAB Bulletin] Additionally, there was an unualilamount of woody debris in the water
noted during the weekly sample collection. Begignon 6 July 2015, the spatial distribution of
GF/F component A followed a pattern of higher peesti concentration d?lanktothrix
cyanobacteria in Sandusky Bay and a lower condémtrautside the Bay, inferred from the
correlation with myxothanthophyll. These resulténpout the utility of VPCA spectral
decomposition of optically complex images earlyha bloom season before NOAA ClI
predictions are initiated. The NOAA HAB Monitoringprk typically shifts from prediction to
bulletin in mid-July, when streamflow and sedimeaotent in the Maumee River plume
decreases, creating conditions in whichherocystisbloom can expand in Western Basin of

Lake Erie.

GF/F Pattern B spectral signature (Figure 6) indg#he presence of sediment and theachl
degradation product, phaeophorbaehen these component scores are positive. This
component generally increases from Sandusky Bayliake Erie (figure 6) on each day
sampled. This trend likely reflects the movementefearly season, precipitation driven,
sediment fluxes from the Sandusky River towardsellBke. On 27 July 2015 the signal from
this component is more evenly distributed acrosssimpling transect, indicating that the heavy

sediment input had been dispersed by this time.
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GF/F pattern C (Figure 6) represents theactdégradation product chlorophyllide and the

mineral hematite. Positive scores have a highamssad to chlorophyllidea proportion, while
negative scores indicate the opposite — a higheraphyllidea to sediment proportion. Two
distinct trends are visible in the scores assodiafieh this component (figure 6). On 8 and 15
June 2015 as well as 6 July 2015 the scores géneralease from Sandusky Bay to Lake Erie.
On 22 and 28 June 2015 as well as 13 & 20 July 204 Signal from this component is much
higher at the furthest west sites: SND 4 & SNDropd in the outer Bay, and increases along the
transect into Lake Erie. This result indicates ttidorophyllidea is present in Sandusky Bay and
coastal Lake Erie throughout the sampling seadthowagh suspended sediment sometimes

becomes the dominant optical signal.

The spectral signature for pattern D (Figure 6yesents a combination of hematite and the chl a
degradation product, phaeophysimwhen the component scores are positive. Thisakign
fluctuates over the course of the sampling seasith,a neutral contribution on 8 and 15 June
2015, with the strongest signal from this compometttin inner Sandusky Bay. On the other
sampling days, the signal from this component hasaker signal in the samples taken from
sites in the outer Bay than from the inner Bay ake Erie. While this mixture of CPAs is
similar to that of Pattern C, the cotegradation products are the result of differathways.
Chlorophyllidea forms due to phytol chain removal through hyds@pwhile phaeophytia
arises from M§' ion removal through demetalation (Hendry, 198ede two chl aegradation
products are spectrally different, but both repnésiee decay of chl a, albeit through different
processes. For our purposes, these pigments iadl@apresence of older chl a in the water

column, and therefore the two degradation prodeasexist in the same water sample, but
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likely in different proportions. Further investigat of the spatial distribution of these processes
would require additional study, but future work tbshed light on the conditions favorable for
each degradation pathway, providing useful inforamategarding the spatial distribution of

various chl a degradation rates.

MODIS component spatial distribution

Figure 7 shows the spatial distribution of compdrpatterns for the VPCA spectral
decomposition of the individual day images acquoe®1, 23, 27, & 28 July 2015. In all
images, the continuum from positive — to — negat@ieies for individual pixels is shown as a

red — to — purple color scheme. Color bars areided for each component’s spatial distribution.

The red areas in Figure 7A, 7E, 71, and 7M indicaltere the in-water reflectance signal is
increasing with pattern A, a mixture of cyanobaetand dinoflagellates. This is within the
Maumee Plume, in the southern part of Maumee Bay eastward to the Lake Erie Islands, into
Sandusky Bay, which is the area where, accordinlggdxperimental Lake Erie Harmful Algal
Bloom Bulletin released on 15 July 2015, the 20bim initiated around 11 July 2015
(https://lwww.glerl.noaa.gov), and is present onfthe days included in this analysis. The CPAs
described by pattern A are also present in SandBalky and could represeRtanktothrixand
dinoflagellates in the turbid water present inpleesistent Sandusky Bay bloom. This component
captures a range of variability in the individualages from 38% to 47% of the image variance.
The daily images indicate the temporal change isfdbmponent over the course of a week. On
21 July 2015, this component is located in a lamga toward the western end of the Maumee

Plume, and a long streamer extending from the sfocitee Lake Erie Islands. The two areas
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begin to combine on 23 July 2015 and by 28 July62@is component has expanded and

increased northward and eastward.

The pattern B spectral signature representingsdayments and the chldegradation
phaeophorbide, found in the discharge plumes of the Detroit Ritlee Portage River, and
streams entering Lake Erie from the Ottawa Natididdllife Refuge, in Lake St. Clair, and
along the northern shore near Long Point, ON (FEguiB, 7F, 7J, & 7N). This component
explains 25% to 33% in the individual image vareoa a day by day basis. This component is
largely absent from the Maumee River Plume inmaliges, but is a clear indicator of the input
from Lake St. Clair and the Detroit River on alydaOn 28 July 2015 this component highlights

all the input river plumes, and is present evethéaMaumee River plume (Figure 7N).

Component pattern C is a sediment and chloropladliconstituent, and is located in the
Maumee River Plume, along the western shore of M&uBay, as well as in Sandusky Bay.
This could represent the signal from the degradatiche very early CyanoHAB bloom (15

July 2015 HAB Bulletin) that began on 11 July 20 %he western-most part of Maumee Bay,
but which drifted offshore to the east by 21 JUt2 (HAB Bulletin). This component explains
21% to 28% of the variability in the individual ig@analyses. The red areas where suspended
sediment is more prominent than degradation predadhe overall mixture, are located further
west in the mouth of Maumee Bay on 21 & 23 July2(Higures 7C & 7G) and are distinct

from the area of cyanobacteria and dinoflagellatdated by pattern A (Figures 7A & 7E).
These two signals (pattern A & pattern C) begioverlap on 27 July 2015 (Figures 71 & 7K),

and overlap even more in area on 28 July 2015 (EggdM & 70). While not all this area is
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addressed by the NOAA CI (29 July 2015 HAB Bultigtithe area in the Maumee plume along
the southern shore of Maumee Bay where the CPAgia$sd with pattern C are located is
identified as cyanobacteria. Our results suggesttths area is older CyanoHAB, where the chl
a signal has begun to degrade as the CyanoHAB sbithe east. The blue areas in all the
images, which indicate an in-water signal wherephyllidea is prominent over the hematite
signal in the overall mixture, are similar to threas indicated by pattern B (Figures 7B, 7F, 7J,

& 7N).

The pattern D spectral signature is found alongstheghern coast of Lake St. Clair and Lake
Erie. This cryptophyta component captures abo@ht®4% of the variance in the individual
images (Figures 7D, 7H, 7L, and 7P). The spatstidution of this component is
complementary to the distribution of pattern A, ehis consistent with observations because
pattern D represents in-water constituents typiadisociated with algal blooms in Lake Erie.
Notably, on 28 July 2015, Pattern D is present lasrder for the area of the bloom identified as
Pattern A (Figure 7P). Additionally, the filamensoswirl of pattern D extending up towards
Point Pelee on both 27 & 28 July 2015 (Figures iidl @P) is quite visible in the NOAA CI

image published in the 29 July 2015 HAB Bulletimg{ie 8).

We can compare our results to the published NOAA CI
(https://lwww.glerl.noaa.gov//res/HABs_and_Hypoxiag)a weighted average of the components
that include a signature within the red edge. Tigtudes all four extracted components
presented in this study (Figure 3E — 3H). Qualimatomparison of the NOAA CI calculated

from the same 28 July 2015 MODIS image (29 July H&Bletin) with the constructed Cl,
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based on the four orthogonal spectral signatuneg;ates that the KSU VPCA spectral
decomposition extracts a more detailed distributib@PAs than the NOAA CI. The spatial
distribution of pattern A (Figure 3I) and the Cdex identify the Maumee Plume as
cyanobacteria, likellicrocystis in the WBLE (Figure 8). However, when all 4 compats are
included in the constructed CI (Figure 8), the hegeneity of the signal shown in the NOAA CI
in the WBLE is more closely matched. This resutigasts that the KSU spectral decomposition
method identifies CyanoHAB related constituentwireater specificity than the NOAA Cl,

and warrants further investigation.

Conclusion:

VPCA Spectral decomposition of derivative reflecispectra acquired from situ samples

and by satellite sensors provide a powerful toobetermining the composition and distribution
of CPAs in Lake Erie, and other optically compleater bodies. Hyperspectral ground data can
be used to help identify the signals extracted frouitispectral satellite data sets as was
successfully demonstrated in this project. We ifiedtfour distinct patterns of CPAs and noted
the temporal change in composition and distributbaach identified CPA. The spatial
distribution of VPCA patterns, in conjunction witie identification of loadings indicate the
distribution of algae, cyanobacteria, sediment, @agladation products of chl a during the early
2015 CyanoHAB season. We also highlighted thaDieoit River plume has a different set of
constituents than that of the CyanoHAB-associaitguats from Maumee River and Sandusky

River to the south.
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This analysis was conducted using images acquftedaparticularly stormy spring, with high
levels of discharge from the Maumee, Detroit, aaddbisky Rivers, as well as frequent high-
wind storm events that re-suspend sediment inlthlbosv WBLE, enhancing the contribution of
sediment to the visible reflectance signature. §pextral decomposition method effectively
partitioned the sediment signal in all images waly@ed. These images capture the beginning of
the 2015 CyanoHAB, including a green algae sigeatamd our analysis supports this
assessment. The correlation of all spectral sigegiatterns with lab-measured water samples
from 21 July 2015, and the strong correlation dfgya C within situchl a measurements on 27
July 2015 supports the conclusion that this metféettively partitions the optical signal from

remote sensing imagery.

The KSU spectral decomposition method has the patéa contribute to future CyanoHAB
monitoring and assessment efforts, as it can guetteseason planning for sampling locations
and yields information about the distribution of thixtures of constituents present and how
they change through time. Moreover, enhanced coatidin ofin situ measurements and remote
sensing datasets has the potential to improve ipagealysis as well as provide powerful

monitoring tools for researchers and water manageméhorities alike.

35



Acknowledgements

Field data was provided by the NOAA Great Lakesiiemnimental Research Laboratory and the
Cooperative Institute for Great Lakes Research paittial funding support from the EPA Great
Lakes Restoration Initiative. George Bullerjahn daglor Tuttle from Bowling Green State
University, Kristin Slodysko from University of Wasgton, along with the BGSU & KSU field
sampling teams were instrumental in data collectida also thank George Bullerjahn for
providing a constructive manuscript review priostdmission. We thank the Ohio Department

of Natural Resources — Watercraft for access tqpBagwessels.

36



References

Ali, K., Witter, D., Ortiz, J., 2014. Applicationf@mpirical and semi-analytical algorithms to
MERIS data for estimating chlorophyll a in Case &avs of Lake Erie. Environ. Earth Sci.
71, 4209-4220. doi:10.1007/s12665-013-2814-0

Ali, K.A., Ortiz, J.D., 2016. Multivariate approadbr chlorophyll-a and suspended matter
retrievals in Case Il type waters using hyperspédata. Hydrol. Sci. J. 61, 200-213.
doi:10.1080/02626667.2014.964242

Ali, K.A., Witter, D.L., Ortiz, J.D., 2013. Multivaate approach to estimate colour producing
agents in Case 2 waters using first-derivative tspphotometer data. Geocarto Int. 1-26.

Bailey, S.W., Werdell, P.J., 2006. A multi-senspp@ach for the on-orbit validation of ocean
color satellite data products. Remote Sens. Envit68, 12—23.
doi:10.1016/J.RSE.2006.01.015

Baker, D.B., Confesor, R., Ewing, D.E., Johnsoil, LKramer, J.W., Merryfield, B.J., 2014.
Phosphorus loading to Lake Erie from the Maumead8sky and Cuyahoga rivers: The
importance of bioavailability. J. Great Lakes R&3,. 502-517.
doi:10.1016/j.jglr.2014.05.001

Balsam, W.L., Deaton, B.C., 1996. Determining tbeposition of late Quaternary marine
sediments from NUV, VIS, and NIR diffuse reflectargpectra. Mar. Geol. 134, 31-55.
doi:http://dx.doi.org/10.1016/0025-3227(96)00037-0

Banks, A.C., Mélin, F., 2015. An assessment of@lmasking schemes for satellite ocean colour

37



data of marine optical extremes. Int. J. RemotesS&®, 797-821.

Becker, R.H., Sultan, M.I., Boyer, G.L., Twiss, M.Ronopko, E., 2009. Mapping
cyanobacterial blooms in the Great Lakes using M®DI Great Lakes Res. 35, 447-453.

Binding, C.E., Greenberg, T.A., Bukata, R.P., 2042 analysis of MODIS-derived algal and
mineral turbidity in Lake Erie. J. Great Lakes R&, 107-116.

Binding, C.E., Jerome, J.H., Bukata, R.P., BootyGW2008. Spectral absorption properties of
dissolved and particulate matter in Lake Erie. Rengens. Environ. 112, 1702-1711.
doi:10.1016/J.RSE.2007.08.017

Bryant, D.A., 1981. The Photoregulated ExpressioMultiple Phycocyanin Species: A General
Mechanism for the Control of Phycocyanin SynthesiShromatically Adapting
Cyanobacteria. Eur. J. Biochem. 119, 425-429.

Carmichael, W.W., Boyer, G.L., 2016. Health impdobsn cyanobacteria harmful algae
blooms: Implications for the North American Greakks. Harmful Algae 54, 194-212.
doi:10.1016/J.HAL.2016.02.002

Clark, R.N., 1995. Reflectance spectra. AGU ReélfSs, 178—-188.

Clark, R.N., Hoefen, T.M., Swayze, G.A,, Livo, K.Bleeker, G.P., Sutley, S.J., Wilson, S.A.,
Brownfield, I.LK., Vance, J.S., 2003. Reflectance&mscopy as a rapid assessment tool for
the detection of amphiboles from the Libby, Montaegion, Open-File Report -
U.S.Geological Survey. U. S. Geological Surv&eston, VA, United States, U. S.
Geological Survey, Denver, CO, United States.

Davis, J.C., 1986. Statistics and data analysigeology. 1986.

Davis, T.W., Bullerjahn, G.S., Tuttle, T., McKay,NR, Watson, S.B., 2015. Effects of

Increasing Nitrogen and Phosphorus Concentratiar3hytoplankton Community Growth

38



and Toxicity During Planktothrix Blooms in SandudBay, Lake Erie. Environ. Sci.
Technol. 49, 7197-7207. doi:10.1021/acs.est.5b00799

Deaton, B.C., Balsam, W.L., 1991. Visible Spectopse-A Rapid Method for Determining
Hematite and Goethite Concentration in Geologicatdvials: RESEARCH METHOD
PAPER. J. Sediment. Res. 61.

Franz, B.A., Bailey, S.W., Werdell, P.J., McClatR., 2007. Sensor-independent approach to
the vicarious calibration of satellite ocean cabtiometry. Appl. Opt. 46, 5068-5082.
doi:10.1364/A0.46.005068

Gordon, H.R., 1997. Atmospheric correction of ocealor imagery in the Earth Observing
System era. J. Geophys. Res. Atmos. 102, 1708161710

Hendry, M.J., 1982. Hydraulic Conductivity of a Gl Till in Alberta a. Groundwater 20, 162—
169.

Ho, J.C., Michalak, A.M., 2017. Phytoplankton blaom Lake Erie impacted by both long-term
and springtime phosphorus loading. J. Great Laless &3, 221-228.
doi:10.1016/J.JGLR.2017.04.001

Hu, C., Carder, K.L., Muller-Karger, F.E., 2000.dspheric correction of SeaWiFS imagery
over turbid coastal waters: a practical method. &erBens. Environ. 74, 195-206.

Kaiser, H.F., 1958. The varimax criterion for anigyotation in factor analysis. Psychometrika
23, 187-200.

Kane, D.D., Conroy, J.D., Peter Richards, R., BaReB., Culver, D.A., 2014. Re-
eutrophication of Lake Erie: Correlations betwedputary nutrient loads and
phytoplankton biomass. J. Great Lakes Res. 40,5306

Kokaly, R.F., Clark, R.N., Swayze, G.A., Livo, K,Hoefen, T.M., Pearson, N.C., Wise, R.A.,

39



Benzel, W.M., Lowers, H.A., Driscoll, R.L., othe)17. USGS spectral library version 7.

Menken, K.D., Brezonik, P.L., Bauer, M.E., 200&luence of Chlorophyll and Colored
Dissolved Organic Matter (CDOM) on Lake ReflectaSqeectra: Implications for
Measuring Lake Properties by Remote Sensing. LaseR. Manag. 22, 179-190.
doi:10.1080/07438140609353895

Mobley, C.D., Werdell, P.J., Franz, B., Ahmad,Bajley, S., 2016. Atmospheric Correction for
Satellite Ocean Color Radiometery: A Tutorial ammtDmentation of the Algorithms Used
by the NASA Ocean Biology Processing Group.

Moore, T.S., Mouw, C.B., Sullivan, J.M., Twardowsk.S., Burtner, A.M., Ciochetto, A.B.,
McFarland, M.N., Nayak, A.R., Paladino, D., StogkIN.D., others, 2017. Bio-optical
Properties of Cyanobacteria Blooms in Western L&ke. Front. Mar. Sci. 4, 300.

Morel, A., Prieur, L., 1977. Analysis of variatiomsocean color 1. Limnol. Oceanogr. 22, 709—
722.

Moses, W.J., Gitelson, A.A., Berdnikov, S., PovaghrV., 2009. Estimation of chlorophyll-a
concentration in case Il waters using MODIS and MEBata—successes and challenges.
Environ. Res. Lett. 4, 45005.

Oberhaus, L., Briand, J.F., Leboulanger, C., Jac@ieHumbert, J.F., 2007. Comparative
effects of the quality and quantity of light andigerature on the growth of Planktothrix
agardhii and P. rubescensl. J. Phycol. 43, 1198-018:10.1111/].1529-
8817.2007.00414.x

Ortiz, J.D., 2011. Application of Visible/near Iafied derivative spectroscopy to Arctic
paleoceanography. IOP Conf. Ser. Earth Environ.12i12011. doi:10.1088/1755-

1315/14/1/012011

40



Ortiz, J.D., Avouris, D., Schiller, S., Luvall, J,&ekki, J.D., Tokars, R.P., Anderson, R.C.,
Shuchman, R., Sayers, M., Becker, R., 2017. Intepasison of Approaches to the
Empirical Line Method for Vicarious Hyperspectraflectance Calibration. Front. Mar.
Sci. 4, 296. doi:10.3389/fmars.2017.00296

Ortiz, J.D., Witter, D.L., Ali, K.A., Fela, N., D&ifM., Mills, L., 2013. Evaluating multiple
colour-producing agents in Case Il waters from LBke. Int. J. Remote Sens. 34, 8854—
8880. do0i:10.1080/01431161.2013.853892

Paerl, H.W., Otten, T.G., 2013. Harmful Cyanobaaté3looms: Causes, Consequences, and
Controls. Microb. Ecol. 65, 995-1010. doi:10.1000/248-012-0159-y

Paerl, H.W., Tucker, J., Bland, P.T., 1983. Caroig¢enhancement and its role in maintaining
blue-green algal (Microcystis aeruginosa) surfdoerns. Limnol. Oceanogr. 28, 847-857.

Romero, A., Gatta, C., Camps-Valls, G., 2016. Uesuped Deep Feature Extraction for
Remote Sensing Image Classification. IEEE TranesGeRemote Sens. 54, 1349-1362.
doi:10.1109/TGRS.2015.2478379

Ruddick, K.G., Ovidio, F., Rijkeboer, M., 2000. Abspheric correction of SeaWiFS imagery
for turbid coastal and inland waters. Appl. Opt, 897-912.

Sathyendranath, S., Lazzara, L., Prieur, L., 19riations in the spectral values of specific
absorption of phytoplankton. Limnol. Oceanogr. 823—-415.

Scheffer, M., Rinaldi, S., Gragnani, A., Mur, L.Ran Nes, E.H., 1997. On the dominance of
filamentous cyanobacteria in shallow, turbid lakesology 78, 272—-282.
doi:10.1890/0012-9658(1997)078[0272:OTDOFC]2.0.CO;2

Shi, W., Wang, M., 2009. An assessment of the bteaan pixel assumption for MODIS SWIR

bands. Remote Sens. Environ. 113, 1587-1597. dd016/J.RSE.2009.03.011

41



Shuchman, R., Korosov, A., Hatt, C., Pozdnyakoy Mkans, J., Meadows, G., 2006.
Verification and application of a bio-optical algbm for Lake Michigan using SeaWiFS: a
7-year inter-annual analysis. J. Great Lakes RE238-279.

Shuchman, R.A., Leshkevich, G., Sayers, M.J., Jg&enT.H., Brooks, C.N., Pozdnyakov, D.,
2013. An algorithm to retrieve chlorophyll, dissetvorganic carbon, and suspended
minerals from Great Lakes satellite data. J. Gra#es Res. 39, 14-33.

Siegel, D.A., Wang, M., Maritorena, S., Robinson, W00. Atmospheric correction of satellite
ocean color imagery: the black pixel assumptiorplA@pt. 39, 3582-3591.
doi:10.1364/A0.39.003582

Singh, A., 1989. Review Article Digital change d#ten techniques using remotely-sensed data.
Int. J. Remote Sens. 10, 989-1003. doi:10.1080/D1&@08903939

Sly, P.G., 1976. Lake Erie and its basin. J. H&fard Canada 33, 355-370.

Song, P.-S., Koka, P., Prezelin, B.B., Haxo, FL976. Molecular topology of the
photosynthetic light-harvesting pigment complexigiain-chlorophyll a-protein, from
marine dinoflagellates. Biochemistry 15, 4422—-4427.

Steffen, M.M., Davis, T.W., McKay, R.M.L., Bulletp@, G.S., Krausfeldt, L.E., Stough, J.M.A,
Neitzey, M.L., Gilbert, N.E., Boyer, G.L., JohengdnH., Gossiaux, D.C., Burtner, A.M.,
Palladino, D., Rowe, M.D., Dick, G.J., Meyer, K.Agvy, S., Boone, B.E., Stumpf, R.P.,
Wynne, T.T., Zimba, P. V, Gutierrez, D., WilhelIm\\&, 2017. Ecophysiological
Examination of the Lake Erie Microcystis Bloom i@12: Linkages between Biology and
the Water Supply Shutdown of Toledo, OH. Enviroci. $echnol. 51, 6745-6755.
doi:10.1021/acs.est.7b00856

Stow, C.A,, Cha, Y., Johnson, L.T., Confesor, Rch@rds, R.P., 2015. Long-Term and Seasonal

42



Trend Decomposition of Maumee River Nutrient Inpiot¥Vestern Lake Erie. Environ. Sci.
Technol. 49, 3392-3400. doi:10.1021/es5062648

Stumpf, R.P., Johnson, L.T., Wynne, T.T., BakeB.D2016. Forecasting annual cyanobacterial
bloom biomass to inform management decisions ireli&ake. J. Great Lakes Res. 42,
1174-1183. doi:10.1016/J.JGLR.2016.08.006

Stumpf, R.P., Wynne, T.T., Baker, D.B., Fahnens@eL., 2012. Interannual variability of
cyanobacterial blooms in Lake Erie. PLoS One 74442

Urquhart, E.A., Schaeffer, B.A., Stumpf, R.P., imft.A., Werdell, P.J., 2017. A method for
examining temporal changes in cyanobacterial hdraifal bloom spatial extent using
satellite remote sensing. Harmful Algae 67, 144-1t%#210.1016/J.HAL.2017.06.001

Wang, M., Bailey, S.W., 2001. Correction of sumgtontamination on the SeaWiFS ocean and
atmosphere products. Appl. Opt. 40, 4790-4798168di364/A0.40.004790

Wang, M., Gordon, H.R., 2018. Sensor performangairements for atmospheric correction of
satellite ocean color remote sensing. Opt. Exi26s3390-7403.
doi:10.1364/0OE.26.007390

Wang, M., Shi, W., 2007. The NIR-SWIR combined aspiteric correction approach for
MODIS ocean color data processing. Opt. Expres43522-15733.
doi:10.1364/0E.15.015722

Wang, M., Shi, W., 2006. Cloud Masking for Oceand€®ata Processing in the Coastal
Regions. IEEE Trans. Geosci. Remote Sens. 44, 3106~
doi:10.1109/TGRS.2006.876293

Watson, S.B., Miller, C., Arhonditsis, G., Boyer,LG Carmichael, W., Charlton, M.N.,

Confesor, R., Depew, D.C., Ho6k, T.O., Ludsin, SMatisoff, G., McElmurry, S.P.,

43



Murray, M.W., Peter Richards, R., Rao, Y.R., Steffél.M., Wilhelm, S.W., 2016. The re-
eutrophication of Lake Erie: Harmful algal bloommslahypoxia. Harmful Algae 56, 44—66.
doi:10.1016/J.HAL.2016.04.010

Witter, D.L., Ortiz, J.D., Palm, S., Heath, R.Tudgl, J.W., 2009. Assessing the application of
SeaWiFS ocean color algorithms to Lake Erie. JaGrakes Res. 35, 361-370.

Wynne, T.T., Stumpf, R.P., 2015. Spatial and terappatterns in the seasonal distribution of
toxic cyanobacteria in western lake erie from 2@IA4. Toxins (Basel). 7, 1649-1663.

Wynne, T.T., Stumpf, R.P., Briggs, T.0O., 2013. Canmpg MODIS and MERIS spectral shapes
for cyanobacterial bloom detection. Int. J. Rente¢as. 34, 6668—6678.

Wynne, T.T., Stumpf, R.P., Tomlinson, M.C., Dyhle,2010. Characterizing a cyanobacterial
bloom in Western Lake Erie using satellite imagengd meteorological data. Limnol.
Oceanogr. 55, 2025-2036. doi:10.4319/10.2010.56Zn2

Xia, J., Du, P., He, X., Chanussot, J., 2014. Hypectral Remote Sensing Image Classification
Based on Rotation Forest. IEEE Geosci. Remote Setts.11, 239-243.
doi:10.1109/LGRS.2013.2254108

Funding: This work was supported by the National Aeronawdied Space Administration
[NNC15VBO05P]; Ohio Sea Grant [R/ES-021-PD, R/ER-RI3]; the Ohio Space Grant
Consortium [Doctoral Fellowship; Campus Allotmeritie Ohio Department of Natural
Resources [in-kind]; and the Kent State UniverBigpartment of Geology. No funding

agency was involved in planning, execution, or gsialof this research.

44



Table 1. Spectral Library contemtsalyzed.

Algal and

Cyanobacterial groups Primary and accessory Pigment degradatior

)

pigments (27)

products (6)

Minerals and mineral
mixtures (41)

Bacillariophyceat
(2 spectra)
Chlorophycear
(2 spectra)
Cryptophyta
Cyanobacteri
(2 spectra)

Dinophyta

Haptophyta

a-Carotene

allophycocyanin
Alloxanthin

Antheraxanthin
[-carotene

Carotenoids
Chlorophyll a +
carotenoids
Chlorophyll a
(3 spectra)
Chlorophyll b
(2 spectra)

Chlorophyll ¢
Diadinoxanthin
Dinoxanthin
Echinenone
Fucoxanthin
Lutein
Myxoxanthophyll
Neoxanthin
Nostoxanthin
Peridinin
Phycocyanir
(2 spectra)
Phycoerythrin

Trans-neoxanthin

Violaxanthin

Chlorophyllide-a

Chlorophyllide-b
Phaeophorbide-a

Phaeophorbide-b
Phaeophytin-a

Phaeophytin-b

Actinolite (2 spectra)

Anhydrite (2 spectra)
Calcite (2 spectra)

Calcite+Dolomite

Chlorite
Chlorite+Smectite
(2 spectra)

Diatomite
Dolomite

Dolomite (Ferroan)
Epidote
Glauconite
Goethite
gypsum (2 spectra)
Hematite
lllite (5 spectra)
Kaolinite (2 spectra)
Kaolinite+Hematite
Muscovite (2 spectra)
Natrolite

Opal
Opal Hyalite
Pyrolusite
Quartz (3 spectra)
Sanidine Feldspar
Smectite (2 spectra)
Smectite+Chlorite+lllite
Sphalerite
Tremolite
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Table 2. Locations of field sites where CIGLR colesl water samples for analysis. Dates indicate the

datasets used in this study.

Site Name Latitude Longitude Date Sampled
(°N) (°W) (2015)

WE2 41.764¢ -83.331« 6/8; 7/20; 7/2
WE4 41.825¢ -83.194- 6/8; 7/20; 7/2
WEG6 41.712: -83.378: 6/8; 7/20; 7/2
WES 41.833t -83.363 6/8; 7/20; 7/2
WE12 41.703¢ -83.258: 6/8; 7/20; 7/2
WE13 41.744: -83.138: 7120; 712
WE14 41.717 -83.014¢ 7120; 712
WE15 41.617 -83.012« 7127
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Table 3. Field site locations and dates where K&8B collected in situ data.

Samples collected in 2015 on: 6/8, 6/15, 6/2, 628, 7/13, 7/20, and 7/27.

Site Name Latitude Longitude
(°N) (°w)
Sandusky Bay
SND 4 41.45333 -82.96076
SND 6 41.45730 -82.89865
SND 2 41.47981 -82.78286
SND 1 41.47736 -82.73978
EC 116: 41.46900 -82.71500
Central Basin Costal Zone
Bells 41.51166 -82.65796
CBCz 2 41.44280. -82.63083
CBCZz3 41.40425 -82.56190
CBCz 4 41.38633 -82.51318
CBCz5 41.43453 -82.37392
CBCZ6 41.45667 -82.21764
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Table 4. Pearson’s Correlation for Gébis VPCA spectral

signature against average MODIS VPCA spectral sigaa Denotes significant correlation with R-crit

=0.754 (df = 5, p = 0.05),

VPCA Spectral Signature Pattern R-value
Pattern / 0.9¢*
Pattern [ 0.9+
Pattern ( 0.8&*
Pattern [ 0.57
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Table 5. ANOVA results for the forward, stepwiseltiple linear regression of the pattern A for
the average MODIS Aqua loadings and the 21 Julb200DIS Aqua image spectral signatures

against standard spectra.

Pattern A — average MODIS spectral signature

R R-Squared Adjusted R- S E p-value
Squared
0.96 0.92 0.88 0.33 24.00 0.00591
Constituent Coeff. Standard Beta t p-value > VIF
Error t
hematite -0.91 0.14 -0.91 -6.378 0.0031 1.07
peridinin 0.61 0.14 0.61 4.25 0.01306 1.07
Pattern A — 21 July 2015 spectral signature
R R-Squared Adjusted R- S E p-value
Squared
0.97 0.94 0.92 0.27 36.72 0.00267
Constituent Coeff. Standard Beta t p-value > VIF
Error t
hematite -0.86 0.11 -0.86 -7.50 0.00169 1.02
myxo- 0.61 0.11 0.61 5.31 0.00602  1.02
xanthophyll
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Table 6. ANOVA results for the forward, stepwiseltiple linear regression of the pattern B for
the average MODIS Aqua loadings and the 21 Julb200DIS Aqua image spectral signatures

against standard spectra.

Pattern B — average MODIS spectral signature

R R-Squared Adjusted R- S E p-value
Squared
0.97 0.94 0.91 0.28 34.11 0.00307
Constituent Coeff. Standard Beta t p-value > VIF
Error t
smectite 0.72 0.12 0.72 5.80 0.00438 1.13
geothite -0.44 0.12 -0.44 -3.51 0.0245 1.13
Pattern B — 21 July 2015 spectral signature
R R-Squared Adjusted R- S E p-value
Squared
0.99 0.98 0.97 0.15 129.72 0.00023
Constituent Coeff. Standard Beta t p-value > VIF
Error t
hematite -0.79 0.06 -0.79 -12.49 0.00024 1.05
phaeophorbide-a 0.44 0.06 0.44 6.97 0.00222 1.05
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Table 7. ANOVA results for the forward, stepwiseltiple linear regression of the pattern C for

the average MODIS Aqua loading spectral signatagasnst standard spectra.

Pattern C — average MODIS spectral signature

R R-Squared Adjusted R- S E p-value
Squared
0.96 0.92 0.88 0.33 24.75 0.00559
Constituent Coeff. Standard Beta t p-value > VIF
Error t
hematite 0.95 0.13 0.95 6.85 0.00237 1.03
chlorophyllide-a  -0.38 0.13 -0.38 -2.79 0.04896 1.03

51



Table 8: ANOVA results for the forward, stepwiseltiple linear regression of the pattern D for

the average MODIS Aqua loading spectral signatanesthe GF/F (MODIS resolution) spectral

signature against standard spectra.

Pattern D — average MODIS spectral signature

R R-Squared Adjusted R- S E p-value
Squared
0.75 0.57 0.48 0.71 6.75 0.04834
Constituent Coeff. Standard Beta t p-value > VIF
Error t
cryptophyta 0.75 0.29 0.75 2.59 0.04834 1.
Pattern D — GF/F spectral signature
Adjusted R-
R R-Squared Squared S F p-value
0.96 0.93 0.90 0.30 31.17 0.00363
Constituent Coeff Standard Beta ¢ p-value > VIE
Error t
hematite 0.88 0.12 0.88 7.02 0.00216 1.05
phaeophytin-a (.63 0.12 0.63 5.05 0.00719 1.05
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Figure Captions

Figure 1. A) Bathymetry map of Lake Erie, delinegtthe Western, Central, and Eastern Basins.
Available from NOAA (Lake Erie and Lake Saint Clamgdc.noaa.gov) B) Field sampling
locations. The 11 KSU sites in Sandusky Bay andgtbe southern coast of the Central Basin
are shown in inset, as well as the sites samplediBy.R. These field sampling sites were
sampled weekly through the summer and fall 2015.

Figure 2. A) Standardized derivative reflectancecsa of peridinin and myxoxanthophyll at 10
nm resolution and at MODIS band resolution. B) 8tadized derivative reflectance spectra of
the minerals goethite, hematite, and smectite aimi@esolution and at MODIS band resolution.
C) Standardized derivative reflectance spectrdnbd@and chla degradation products
phaeophytira, chlorophyllidea, and phaeophorbide at 10 nm resolution and at MODIS band
resolution. Note that distinguishing peaks in thectra are lost when resolution is re-sampled,
but that there are differences between pigmentsrandrals that allow for identification of
specific constituents.

Figure 3. VPCA spectral decomposition results fier GF/F lab-measured reflectance spectra
and MODIS Aqua images acquired on 21, 23, 27 anduR82015. Spectral signature patterns
extracted by VPCA spectral decomposition of theFcddtaset (blue) at 10 nm resolution; the
GF/F dataset (orange) at MODIS band resolution JAHQures E-H show the MODIS image
spectral signature patterns, with the average sigaahown in black. lIdentified CPA
represented by each component is listed below.

Figure 4. Regression of GF/F score values on 20205 against the 21 July 2015 MODIS
Aqua image score values at KSU sampling locatiBrstit = 0.754 (df=5, p=0,05). A) spectral
signature pattern A; R-value = 0.73. B) spectrgihature pattern B; R-value =-0.80. C) spectral
signature pattern C; R-value = 0.88. D) spectgiaiure pattern D; R-value = 0.77.

Figure 5. A) 27 July 2015 MODIS image score valuegattern C at the NOAA CIGLR
sampling locations plotted agaimstsitu chla measured by NOAA CIGLR on 27 July 2015. R-
value = 0.88 (df=6, p=0.05). B) Location of NOAAGIR sampling locations plotted on the
spatial distribution of the 27 July 2015 MODIS ireguattern C.

Figure 6. VPCA spectral decomposition results fier &GF/F dataset. Points marked with a closed
circle are field sampling sites in Sandusky Bay D§Nopen circles denote field sampling sites
along the southern central basin coast (CBCZ)eRa#A spectral signature and spatial
distribution. Pattern A represents sediment, dag#llates, and cyanobacteria. Pattern B spectral
signature and spatial distribution. Pattern B repnés smectite & goethite and ehtlegradation
products. Pattern C spectral signature and sphstrlbution. Pattern C represents hematite and
chla degradation products. Pattern D spectral signatudespatial distribution. Pattern D
represents hematite and phaeophytin a.

Figure 7. Spatial distribution of each spectrahaigre pattern for the four MODIS Aqua images

acquired on 21, 23, 27 and 28 July 2015. Cyanobadaad dinoflagellates are present in the red
areas of pattern A (panels A, E, |, and M). Theaeghs of pattern B indicate sediment laden
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riverine discharge is present (panels B, F, J,NndPattern C (panels C, G, K, and O) highlight
the presence of hematite and chlorophyll degradatfoducts. Red areas in pattern D (panels D,
H, L, and P) indicate the presence of cryptophytes.

Figure 8: The ‘constructed CI’ based on the weidlaédition of the 4 VPCA patterns extracted
from the 28 July 2015 MODIS Aqua image. Shown hemomparison to the NOAA CI
calculated from the same image. The NOAA CI figweess taken from the publicly available
HAB bulletin (https://www.glerl.noaa.gov//res/HABand_Hypoxia/) hosted by NOAA-GLERL.
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