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Abstract  

Timely identification of color-producing agents (CPAs) in Lake Erie is a challenging, but vital 

aspect of monitoring Harmful Algal Blooms (HABs). In particular, HABs that include large 

amounts of cyanobacteria (CyanoHABs) can be toxic to humans, posing a threat to drinking 

water, in addition to recreational and economic use of Lake Erie. The optical signal of Lake Erie 

is complex (Becker et al., 2009; Moore et al., 2017), typically comprised of phytoplankton, 

cyanobacteria, colored dissolved organic matter (CDOM), detritus, and terrigenous inorganic 

particles, varying in composition both spatially and temporally. The Kent State University (KSU) 

spectral decomposition method effectively partitions CPAs using a varimax-rotated, principal 

component analysis (VPCA) of visible reflectance spectra measured using lab, field or satellite 

instruments (Ali et al., 2013; Ortiz et al., 2017, 2013). We analyze 2015 imagery acquired by the 

Moderate Resolution Imaging Spectroradiometer (MODIS) sensor and field samples collected 

during the early 2015 cyanoHAB season. We identified four primary CPA spectral signatures, 

and the spatial distribution of each identified CPA, in the reflectance spectra datasets of both the 

MODIS and lab-measured water samples. The KSU spectral decomposition method results in 

mixtures of specific pigments, pigment degradation products, and minerals that describe the 

optically complex water. We found very good agreement between the KSU VPCA spectral 

decomposition results and in situ measurements, indicating that this method may be a powerful 

tool for rapid CyanoHAB monitoring and assessment in large lakes using instruments that 

provide moderate resolution imagery (0.3 to 1 km2). 

 

Keywords: remote sensing; MODIS; cyanobacteria; Harmful Algal Blooms; Lake Erie; 

VPCA 
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Introduction  

Lake Erie is an economic and social resource, providing much of the regional drinking water for 

surrounding communities, particularly in Northern Ohio. Lake Erie is divided into three basins 

(Figure 1A) formed during the last glacial advance, which differ in average depth, due to 

bedrock geology (Sly, 1976). The Western Basin of Lake Erie (WBLE) extends from the western 

coast of the lake to a line drawn from Point Pelee, ON to Lorain, OH, and is the shallowest sub-

basin of Lake Erie. Sandusky Bay, the largest marginal basin in Lake Erie, is located along the 

southern shore of the western basin. The Detroit and Maumee Rivers are the major rivers that 

discharge into the WBLE, while the Sandusky River, the third largest source of fluvial input to 

Lake Erie, feeds in via Sandusky Bay. The Maumee watershed, located primarily in Ohio and 

Indiana, but which also includes a small portion of southern Michigan, is dominated by 

agricultural activity as is the Sandusky River watershed. Perennial toxic cyanobacterial and 

Harmful algal blooms (CyanoHABS) develop during the summer as lake conditions become 

increasingly eutrophic due to nutrient input from the rivers that feed into Lake Erie (Baker et al., 

2014). The shallow depth, warm water, and input of agriculturally-derived nutrients from the 

Maumee and Sandusky Rivers combine to create ideal conditions for algal and cyanophyte 

growth in the Western Basin and Sandusky Bay (Paerl and Otten, 2013).  

 

Of specific concern are blooms containing toxic cyanobacteria. The toxin, microcystin, produced 

by Microcystis and Planktothrix, which flourish in Lake Erie and Sandusky Bay respectively, 

can cause liver damage, while Lyngbya wollei produces a freshwater analogue of saxitoxin, 

which can damage the nervous system (Carmichael and Boyer, 2016). The Maumee River is the 

source of the heavy springtime nutrient loading to the Western Basin that drives the 
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predominantly Microcystis CyanoHAB; the Sandusky River drives the Planktothrix CyanoHAB 

that forms in Sandusky Bay (Davis et al., 2015; Ho and Michalak, 2017; Kane et al., 2014; Stow 

et al., 2015; Watson et al., 2016; Wetzel et al., 2003). Significant CyanoHABS have become an 

almost yearly occurrence over the last decade, presenting serious risks to human and animal 

health, and can impart an unpleasant taste and odor to drinking water (Becker et al., 2009; 

Stumpf et al., 2012). The impact of CyanoHABs on drinking water supplies was clearly 

demonstrated during the water use ban issued by the city of Toledo, OH on 2 August 2014 

(Steffen et al., 2017), when microcystin exceeded 1µg L-1, the safe level as established by the 

World Health Organization (WHO). The Toledo municipal water supply was shut down, leaving 

nearly 500,000 people without running water for three days, until the ban ended on 4 August 

2014. The shutdown was enforced until lines could be flushed and appropriate treatment 

measures implemented to prevent the CyanoHAB bloom that continued to surround the water 

intake at the Toledo Crib from further contamination of the water supply. This situation 

highlights that rapid identification of color producing agents (CPAs) that include CyanoHABs in 

the lake’s waters is vitally needed to provide timely data for water management purposes, to 

establish recreational use warnings such as beach closures, and for the detection of CyanoHABs. 

In addition to cyanobacteria, other CPAs present may include other phytoplankton pigments, 

colored dissolved organic matter (CDOM), phytodetritus, and terrigenous inorganic particles, all 

contributing to the complexity of the optical signal. The need for effective analysis methods to 

distinguish between CPAs is emphasized by the similarities in optical characteristics of some of 

these CPAs. 

 

Remote Sensing of CyanoHABs 
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Historically, the optical complexity of Lake Erie has made remote sensing applications 

challenging (Ali et al., 2013; Ali and Ortiz, 2016; Becker et al., 2009; Moore et al., 2017; Ortiz 

et al., 2013; Witter et al., 2009). One aspect of this challenge is that both cyanobacteria and other 

phytoplankton contain chlorophyll a (hereafter, chl a), making that primary pigment less than 

ideal for distinguishing between potentially toxic CyanoHABs and nuisance blooms. To address 

that challenge, we focus on identification of chl a as well as accessory pigments that distinguish 

algal and cyanobacterial groups. In addition, various types of sediment as well as CDOM have 

been shown to have unique spectral characteristics and can be identified by spectroscopic 

analysis (Balsam and Deaton, 1996; Clark, 1995; Clark et al., 2003; Deaton and Balsam, 1991; 

Menken et al., 2006). To identify the mixtures of CPAs present, we apply the Kent State 

University (KSU) spectral decomposition method (Ortiz, 2011; Ortiz et al., 2013), which uses 

varimax-rotated, principal component analysis (VPCA) to differentiate constituents based on 

their spectral characteristics (Davis, 1986; Kaiser, 1958).  

 

VPCA spectral decomposition 

Principal component analysis is a dimensional reduction statistical tool that reduces a 

multivariate dataset to a few independent principal components. This method is ideal for 

analyzing highly correlated data as well as separating the environmental signal from the noise 

present in multivariate datasets, such as reflectance spectra obtained from optically complex 

waters (Ortiz et al., this issue, 2017, 2013). In this application, the VPCA functions as a data-

adaptive filtering and unsupervised, soft, classification system (Romero et al., 2016; Singh, 

1989; Xia et al., 2014). 
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A VPCA of the visible spectrum (400-700 nm) from the Medium Resolution Imaging 

Spectrometer (MERIS) sensor has produced excellent results in detection of chl a concentrations 

(Ali et al., 2014), leading to an effective method for discriminating between various CPAs in 

optically complex waters. All reflectance bands in the visible are highly correlated, which 

requires use of some method to deconvolute spectral signals (Ortiz et al., this issue, 2017, 2013). 

While MERIS ceased operations in 2012, the spectral bands of the MODIS instruments are also 

suitable for detection of HABs in Lake Erie, particularly by spectral shape decomposition 

methods like VPCA that work based on the correlation structure of the data set (Ortiz et al., this 

issue, 2017, 2013). Furthermore, MODIS imagery has been successfully used in various 

algorithms focused on detection of CyanoHABs and retrieval of chl a (Becker et al., 2009; 

Binding et al., 2012; Shuchman et al., 2006, 2013; Stumpf et al., 2016; Wynne et al., 2013, 2010; 

Witter et al., 2009). This previous work provides background and motivation for our study. 

 

MODIS sensors 

Complementary MODIS sensors are currently orbiting onboard the NASA Aqua and Terra 

satellites. Our dataset is comprised of images acquired by MODIS Aqua. The Aqua satellite is on 

the ascending node, acquiring data at 1:30 pm local time. This sensor provides daily imagery 

sampled around the entire Earth and data is freely available within hours of data acquisition. 

MODIS bands 8-14 have a high signal to noise ratio (SNR > 750), and are used in our analysis 

(NASA MODIS specifications: https://modis.gsfc.nasa.gov/about/specifications.php). Bands 1-4, 

designed for Land/Cloud/Aerosol Boundary detection, while also within the VNIR region of 

interest, have lower SNR (<250), which makes them less suitable for our purpose in comparison 



 7

to the higher SNR bands. The MODIS instruments have a ground resolution of 1 km2, which is 

adequate for study of large water bodies like Lake Erie. 

 

2015 spring meteorological conditions 

According to the National Oceanic and Atmospheric Administration (NOAA) National Center 

for Environmental Information, 2015 spring precipitation in Indiana and Ohio was average to 

above average in March, April, and May, 2015. June 2015 was a record wettest month for both 

states, based on average precipitation records for the period of 1895-2017 

(https://www.ncdc.noaa.gov/temp-and-precip/us-maps/). This intense precipitation caused a peak 

discharge of 2806 m3 s-1 from the Maumee River on 30 June 2015, recorded at USGS gauge 

#04193500 located in Waterville, OH just upstream of Toledo, OH (National Water Information 

System https://waterdata.usgs.gov/nwis). As a result of the spring discharge, the WBLE had high 

levels of suspended sediment through June and early July, frequently re-suspended by strong 

winds associated with storms during the spring precipitation season. The discharge contributed to 

high nutrient loading, but delayed bloom conditions due to sediment turbidity and thus, low light 

conditions (Ho and Michalak, 2017; Watson et al., 2016). The suspended sediment is visible in 

the MODIS imagery from this time, contributing to the complexity of the optical signal.  

 

Project Objectives 

The multi-faceted problem of CyanoHAB occurrence in Lake Erie, and the challenge of 

identifying in-water constituents in a timely fashion, defines the purpose of this study. We are 

interested in providing a methodology to aid in rapidly determining the composition of CPAs in 

Lake Erie, and their distribution at times in the year before conventional remote sensing methods 
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can be applied (due to the presence of mixed spectral signatures). This will allow earlier incipient 

bloom identification at lower detection limits. To that end, this study brings together remote 

sensing and in situ field datasets for analysis and comparison. Here we present in situ field and 

lab-filtered data for comparison with near-concurrent MODIS imagery. The lab-filtered water 

samples were collected by KSU, while the in situ field measurements were collected by the 

Cooperative Institute for Great Lakes Research (CIGLR), a multi-institution collaborative 

affiliated with NOAA Great Lakes Environmental Research Laboratory (NOAA-GLERL). Four 

reasonably cloud-free images were acquired by MODIS Aqua on 21, 23, 27, & 28 July 2015. 

These images span a 1 – week time period, and comprise our remote sensing dataset which 

documents the inception of the bloom in mid-July as reported by the NOAA HAB Bulletin. The 

HAB Bulletin, using the NOAA-CI algorithm (Wynne et al., 2013), is produced by NOAA CO-

OPS, and provides information on current and predicted CyanoHAB locations (Lake Erie HAB-

OFS Bulletin Guide 

https://tidesandcurrents.noaa.gov/hab/hab_publication/Lake_Erie_HAB_Bulletin_Guide.pdf). 

We decompose the reflectance spectra of both remote sensing data and lab-measured field 

samples collected by KSU to extract the primary components of the optical reflectance signal. 

We then compare our results with the field and lab measurements to validate our analysis. We 

find that spectral decomposition of remote sensing imagery is a highly effective method for 

distinguishing the primary CPA signals in optically complex waters, and can be used in 

conjunction with well-planned, field sampling campaigns to assess CyanoHAB formation and 

development. 

 

Methods 
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Field Data Collection 

We collected water samples at 11 locations in Sandusky Bay and along the coast between Lorain 

and Sandusky, OH (Figure 1B, Table 2). These sites were re-visited weekly from 8 June – 2 

September 2015. Surface water was collected at each site using a bucket to skim the surface 

(~10-30 cm) and poured into 1 L Nalgene sample bottles. The samples were transported to the 

lab on ice, and filtered immediately through a 47 mm GF/F filter. The lab processing protocol 

followed that of Ortiz et al. (2013). These filters retain particulate matter larger than 0.7 µm from 

the surface water sample, but excludes all CDOM from the sample. The GF/F filter was then 

oven dried, to remove all water from the particulate matter. The samples were then measured 

using a benchtop ASD (now Malvern Panaltyical) LabSpec Pro FR UV/VIS/NIR spectrometer, 

equipped with a high-intensity contact probe, which has an internal light source of known 

properties. This instrument measures reflectance from 350 nm - 2500 nm, at ~4 nm spectral 

resolution in the visible and 10 nm in the NIR. To exclude any ambient light during 

measurement, each GF/F filter was placed on top of a circular SpectalonTM plate (9 cm diameter) 

sitting on a scissors jack, and the instrument probe was brought into contact with the GF/F filter. 

Results are oversampled by the ASD software and reported at 1 nm resolution to fully 

characterize peak position and amplitude.  A total of 900 measurements (collected in groups of 

30) were averaged to produce a single, high signal-to-noise (SNR) reflectance spectra for each 

GF/F sample. A blank GF/F filter was also measured in the same manner during each processing 

run, to determine the spectral characteristics of the filter paper. We removed the filter signal 

from the measured signal by dividing the sample measurement by the blank measurement, 

isolating the spectral response of the particulate matter (Ortiz et al., 2013). The visible part (400-

700 nm) of the measured reflectance spectra were extracted from the full spectrum and collected 
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into a single database. We then interpolated this dataset from 1 nm spectral resolution to 10 nm 

over the spectral range from 400 nm to 700 nm, to further increase the SNR, and to remove the 

effect of spectral oversampling by the ASD software, while maintaining the hyperspectral nature 

of this dataset. We then calculated the center-weighted, first derivative for each sample.  In 

addition, the 1 nm resolution spectra were band-averaged to replicate MODIS bands 8-14, using 

the MODIS bandwidth definitions, and band naming conventions. The center-weighted, first 

derivative of each simulated MODIS-resolution GF/F reflectance spectra was calculated for each 

sample in the dataset for comparison. The lab measurements from these field-collected samples 

are referred to as the “GF/F samples” throughout this paper, and the MODIS resolution GF/F 

sample spectra are referred to as GF/FMODIS. 

 

In situ data was collected by CIGLR from 8 June to 5 October 2015 on a nearly weekly basis. 

Samples are collected at fixed sampling sites (Figure 1B, Table 3). In addition to Secchi depth, 

other parameters measured in the field with a SeaBird CTD include: temperature, specific 

conductivity, beam attenuation, transmissivity, chl a, phycocyanin, and dissolved oxygen. In 

addition, water samples were collected at each site, and measured in the CIGLR lab for extracted 

phycocyanin, particulate and dissolved microcystin, turbidity (using a HACH benchtop 

turbidimeter), and extracted chl a using a Turner 10AU fluorometer. 

 

MODIS Imagery Data – acquisition and pre-analysis processing 

We obtain all our MODIS imagery from the NASA Ocean Biology Processing Group (OBPG) at 

NASA Goddard, which provides MODIS data products, and the open-source processing software 

SeaDAS, through the Ocean Color Web (https://oceancolor.gsfc.nasa.gov).  The remote sensing 
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images are obtained as a Level-1 product, and processed to Level-2 remote sensing reflectance 

using SeaDAS, which facilitates further satellite data processing and image analysis. Level 1A 

MODIS imagery of Lake Erie and Lake St. Clair acquired within a ±3 day window centered on 

field campaign dates were downloaded and qualitatively assessed for cloud cover. While 

conditions can change rapidly in Lake Erie, previous work has shown that images acquired 

within ±1 day of field sampling campaigns best capture the in-water signal, but that a time lag of 

±3 day between samples and imagery is acceptable (Bailey and Werdell, 2006; Moses et al., 

2009). For comparisons with field data, valid pixels were extracted from each image that was 

closest in time to the sample collection within this temporal window. Four reasonably cloud free 

(determined by visual inspection, focusing on the Western Basin) images from the Aqua sensor 

were available for 21, 23, 27 & 28 July 2015. These images are within ±1 day of field sampling 

dates. We use only the images acquired by MODIS Aqua for this study as the images acquired 

by Terra on 21 & 23 July 2015 exhibit significant striping due to a known mirror-side banding 

issue (https://mcst.gsfc.nasa.gov/calibration/mirror-side-striping). Removal of the mirror-side 

banding as an image pre-processing step is beyond the scope of this paper. 

 

The standard SeaDAS processing stream applies a series of corrections to the L1 radiance values 

of bands 1, 3, 4, 8 – 14 (visible light range) to L2 surface reflectance values, with an approximate 

range of values from -0.015 to 0.115 sr-1 

(https://oceancolor.gsfc.nasa.gov/docs/format/Ocean_Level-2_Data_Products.pdf); this process 

also provides geophysical parameter flags. The flags provide information on pixel quality, and 

create land and cloud masks for each image (help manual: https://seadas.gsfc.nasa.gov/help/). 

The atmospheric correction step, accounts for the effect of the atmosphere on the signal received 
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by the sensor. MODIS, as with all satellite based sensors, measure the total radiance at the top of 

the atmosphere (Lt
TOA). The total measured radiance is a combination of the water-leaving 

radiance of interest with reflected radiance from the surface of the water, atmospheric scattering 

due to aerosols and atmospheric gasses such as ozone, (Mobley et al, 2016). The contributions to 

the TOA radiance measurements by factors other than water-leaving radiance must be estimated 

and subtracted from the measurement (Franz et al., 2007; Gordon, 1997; Wang and Bailey, 

2001). The various atmospheric contributions are influenced by atmospheric conditions such as 

the amount and type of aerosols, relative humidity, and particulate matter present, as well as by 

the angle of the sun and the viewing angle of the instrument. The atmospheric correction process 

is a step-wise algorithm that assesses the conditions in which each image was acquired. 

 

The calculations for these steps that the OBPG (SeaDAS) implements as standard processing 

protocol are described in Mobley et al (2016). These steps include correction for gas absorption, 

correction for polarization, a removal of foam reflectance, correction for Rayleigh scattering, sun 

glint removal, and aerosol correction. The corrected TOA radiance measurement is then 

transformed to a normalized water-leaving radiance. An assessment is then made to determine if 

the near-infrared (NIR) values have changed significantly from the measured TOA radiance. If 

this change is large, the algorithm iterates through the sun glint removal, aerosol removal, and 

normalization steps until the change in NIR radiance is small. Then a correction is applied to 

remove any measurement of radiance outside each individual bandwidth, called an ‘out-of-band’ 

correction (Mobley et al, 2016).  
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The last step in the OBPG atmospheric correction is the bidirectional reflectance distribution 

function (BRDF) effect correction (Mobley et al, 2016). The BRDF effect is the effect of sky 

radiance distribution, viewing geometry, and water optical properties on upwelling radiance 

distribution. The key aspect of this correction is the water optical properties. These properties are 

largely dependent on the amount of chl a in the water, and the standard BRDF correction is based 

on Case 1 water body models with a known chl a concentration (Mobley et al, 2016). Case 1 

water bodies, typically oceans, are those in which chl a concentration is the dominant factor 

affecting in-water scattering (Morel and Prieur, 1977). This step, along with the use of the NIR 

bands as an assessment of sun glint and aerosol removal, potentially introduces error into the 

OBPG level 2 products for optically complex, turbid coastal environments such as Lake Erie 

because the scattering is due to multiple factors. The reflectivity of turbid, high chl a waters is 

non-negligible in the NIR, making those bands less effective for removing the effects of the 

atmosphere (Shi and Wang, 2009; Siegel et al., 2000). The challenge of effective atmospheric 

correction for turbid, coastal waters is an ongoing focus of research (e.g. Hu et al., 2000; 

Ruddick et al., 2000), although recently the development of algorithms using the SWIR bands 

have been successful (Wang and Gordon, 2018; Wang and Shi, 2007). 

 

The SeaDAS level 2 processing tool allows for different options in the processing stream. One of 

the options is a cloud mask threshold that is HAB specific for coastal, optically complex waters, 

and is suitable for use in Lake Erie (Urquhart et al., 2017; Sean Bailey, NASA OBPG, personal 

communication, 2017) 

https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?pid=28087). This same cloud 

mask threshold is employed with the NOAA CI (Wynne and Stumpf, 2015; Sean Bailey, NASA 
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OBPG, personal communication, 2017) 

https://oceancolor.gsfc.nasa.gov/forum/oceancolor/topic_show.pl?pid=28087). The shallow 

nearshore, sediment laden, turbid water of the WBLE causes the standard Ocean Color cloud 

mask algorithm to flag pixels with high reflectance values, typically associated with sediment or 

HABs, as clouds. Use of a standard OceanColor mask would have resulted in an underestimation 

of valid data pixels in the image (Banks and Mélin, 2015; Wang and Shi, 2006). Using the HAB 

specific cloud mask SeaDAS processor reduces the number of valid pixels that would have been 

inaccurately flagged as clouds. A first-look test was run on the 28 July 2015 MODIS image, 

using the standard processing protocol, the standard processing protocol with the HAB-specific 

cloud mask, and with the atmospheric option using SWIR instead of NIR bands, and the HAB-

specific cloud mask. The results indicate that the HAB-specific cloud mask improves the 

retrieval of water pixels in the image, but that there is no difference between the standard 

atmospheric correction and the SWIR-based option. Therefore, the standard OBPG parameters 

were used for the atmospheric correction routine (Mobley et al, 2016), including the standard 

NIR band value check, with the HAB-specific cloud mask option enabled. This also allows a 

more direct comparison with the NOAA CI product which used the same cloud masking option. 

After processing to Level 2 products, the images were geo-rectified and cropped to isolate Lake 

Erie, using SeaDAS tools. 

 

VPCA Spectral Decomposition 

Varimax-rotated, principal component analysis (VPCA) is an eigenvalue-eigenvector based 

statistical matrix rotation procedure that maximizes the variance within a dataset along 

orthogonal axes, and reduces dimensionality of a multivariate dataset. The resultant eigenvectors 
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describe the direction of the new axes, and the eigenvalues describe the length of the axes, or 

how much signal variance is associated with that eigenvector. The eigenvector-eigenvalue pairs 

are the VPCA components. The longest eigenvectors, corresponding to the largest eigenvalues, 

are retained. Noise is partitioned into the trailing components, referred to as the noise floor, and 

discarded. When we apply this method to remote sensing imagery, the input variables are the 

wavelength bands, while the input samples are the image pixels. The components are orthogonal, 

and therefore independent of each other, which addresses any correlation between sensor 

wavelength bands (Davis, 1986). The varimax rotation maximizes the differences between the 

small and large component loadings, which vary as a function of wavelength, simplifying the 

spectral shape functions, while maintaining orthogonality, which aids in the interpretation of the 

spectral shapes (Kaiser, 1958). The resultant VPCA component loadings describe the spectral 

signature of the in-water color producing agents represented by that component while the 

component scores describe the spatial distribution of each component. The VPCA method was 

applied to each image separately. The spectral signatures from each separate image were grouped 

into patterns based on their extracted spectral shapes (component loadings). The spectral 

signatures from each of the images in a pattern group were then averaged to produce an average 

spectral signature pattern. The identification of individual image spectral signatures and the 

average pattern signature were very similar although notable differences in identification are 

discussed below. 

 

Each VPCA component loading (spectral signature) and average of spectral signature, is 

identified using a library of known reflectance derivative spectra of water quality constituents 

(Table 1), which includes 44 algal & cyanobacterial pigments, accessory pigments and 
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chlorophyll degradation products, compiled from the literature (Ortiz et al., this issue, 2013 and 

references therein), and using mineral spectra from the United States Geological Survey (USGS) 

Spectral Library (Clark, 1995; Kokaly et al., 2017) or measured in the lab (Ortiz et al., this issue, 

2013). This identification process – employed with both the MODIS and the filtered GF/F 

sample spectra uses a stepwise, forward multiple linear regression of the component loading 

against known standardized spectra, a form of principal component regression. The Variance 

Inflation Factor (VIF) is used to ensure that the regressions do not exhibit multicollinearity 

(Ortiz, et al, and references therein, this issue).  This forward, stepwise, multiple linear 

regression creates a null model and adds and removes variables until the match is optimized 

(Ortiz et al., this issue, 2017, 2013). In this usage, each variable is a standard spectra from the 

library. This can result in a VPCA spectral signature identified as a mixture of pigments, 

minerals or degradation products; however, this is reasonable within this complex environment 

and is determined by the correlation structure of the data set. The spectral library is hyperspectral 

at 10 nm resolution from 400-700 nm. For this study, we resampled the library to MODIS 

resolution, based on the bandwidth of each MODIS band, before the identification analysis was 

performed.  

 

Relevant examples of the differences between the original, hyperspectral library spectra and the 

multispectral MODIS resolution spectra are shown in figure 2 for three categories of in-water 

constituents: the dinoflagellate accessory pigment peridinin and the cyanobacterial accessory 

pigment myxoxanthophyll (figure 2A); geothite, hematite & smectite minerals (figure 2B); and 

chl a and its degradation products (figure 2C). The standard spectra for peridinin and for 

myxoxanthophyll are shown in figure 2A. When these spectra are resampled to MODIS band 
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resolution, the distinguishing peaks at 500 nm, 510 nm, and 520 nm are muted, and the spectra 

for the pigments become similar, highlighting one of the limitations of multispectral instruments 

relative to hyperspectral ones. In particular, this loss of reflectance peak amplitude and structure 

is particularly accentuated in data from coarse resolution, multispectral instruments, where gaps 

exist in the visible spectrum due to band placement decisions implemented during instrument 

design.  

 

The standard spectra for minerals can be distinguished because the derivative spectra exhibit 

different peaks (Figure 2B). In particular, the smectite derivative spectrum is higher in the blue 

range (400 nm – 450 nm) and then decreases towards the red wavelengths (600 nm) before 

leveling off from 600 nm – 650 nm. In contrast, the derivative spectra of goethite and hematite 

are low in the blue end, and then increase to a peak at 550 nm – 570 nm for goethite and at 570 

nm – 590 nm for hematite. Goethite and hematite are similar at MODIS resolution, but goethite 

has a lower trough at 670 nm than hematite (figure 2B) and a secondary peak at 440 nm, which is 

absent from the hematite spectrum.  

 

The derivative spectra of chl a and the three chl a degradation products are shown in Figure 2C. 

These derivative spectra are similar, with a level response between 580 nm & 670 nm, increasing 

at 680 nm, although the depth and width of the trough and peak between 650 nm and 700 nm 

differ for the three constituents. Phaeophytin a and phaeophorbide a have a higher response in 

the blue wavelengths (410 nm), while chlorophyllide a has a lower response at 410 nm. The 

peaks in the chl a derivative spectra reside at 450 nm & 680 nm in the 10 nm resolution spectra, 

offset from the peaks in the phaeophorbide a and phaeophytin a degradation products, but are 
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similar in placement to peaks in the chlorophyllide a derivative spectra. At 10 nm resolution, the 

relative amplitude of the peaks on the blue and red ends of the spectra differ as do their relative 

placement, helping to differentiate these compounds from each other when conducting a whole 

waveform decomposition. However, at multispectral MODIS resolution, the chl a spectrum is 

similar to the chlorophyllide a spectrum, except for a higher response at 665 nm, yielding some 

ambiguity in differentiating these two constituents. The similarity of these derivative spectra 

indicate some ambiguity in differentiating chl a from chlorophyllide a and in differentiating 

phaeophytin a and phaeophorbide a from each other. Notice that algorithms based on bands 

centered only on the red edge would have even more difficulty differentiating between chl a, 

chlorophyllide a, phaeophytin a and phaeophorbide a. 

 

Field Data VPCA 

As with the remote sensing observations, the visible spectra measured from the filtered water 

samples represent mixed signals that depend on the weighted average of the collected particulate 

matter, and must also be spectrally unmixed. The database of measured GF/F sample reflectance 

derivative spectra, band averaged to match MODIS bandwidths, was analyzed with varimax-

rotated, principal component analysis (VPCA) using SPSS statistics software by IBM. The field 

sample data includes 93 samples. Each row in the data set represents a daily sample composed of 

a center-weighted, visible reflectance derivative spectrum with the variables (columns) defined at 

the center-weighted wavelength of the MODIS bands, derived from the hyperspectral 

observations.  

 

MODIS Imagery VPCA 
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The reflectance spectra of all pixels in each of the MODIS images is scaled by multiplying all 

Rrs values by a factor of 105, to avoid very small derivative values for plotting, then analyzed 

using the ENVI function Forward PCA Rotation. Forward PCA Rotation calculates eigenvectors 

and eigenvalues for the dataset of derivative spectra, and basic statistics, i.e. the standard 

deviation, minimum, maximum and mean of the dataset. The varimax rotation of the principal 

components is carried out in IDL, using in-house and open source algorithms.  

 

Pixel Extraction in-water data matching 

The location of each 2015 field sampling site (Table 2) used by CIGLR in the WBLE was 

identified in the MODIS Aqua image VPCA component score maps from 21, 23, 27, & 28 July 

2015, and the pixel value of each of the component scores closest to the field sampling location 

was extracted. Eight CIGLR station locations were sampled on 27 July 2015, and each MODIS 

image pixel at the sampling locations had valid data, providing eight data pairs for comparison. 

The VPCA score values were regressed against the field data provided by CIGLR. The critical 

Pearson's R-value for 6 degrees of freedom (df = 6) at the p=0.05 confidence level is R-crit = 

0.707. We also extracted the 21 July 2015 MODIS image VPCA score at each location where 

spectra from filtered KSU GF/F sample measurements were most closely collected in time and 

space (Table 3). There were eleven sampling locations visited on 20 July 2015, and the closest 

matching, 21 July 2015, MODIS image had valid data in pixels containing seven of those 

sampling locations. We regress the GF/F sample VPCA scores against the VPCA scores of 

MODIS image pixels at the KSU sampling locations. The critical Pearson’s R-value for this 

dataset is R-crit = 0.754 (df = 5, p=0.05). 
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Comparison to NOAA CI 

We constructed an image for comparison to the 28 July 2015 NOAA CI image by adding each of 

the 28 July 2015 MODIS Aqua VPCA spectral decomposition components, weighted by the 

percent variance explained by each component. This resulted in a single band image that can be 

visually compared to the published NOAA CI image. The components were added sequentially 

until the visual match was optimized. In this case, on 28 July 2015, all extracted VPCA 

components that included a red edge response were included in the constructed CI. 

 

Results and discussion 

The VPCA spectral decomposition analysis of all datasets resulted in four principal components 

that fell into distinct loading patterns representing the spectral signature of each component, with 

associated component spatial distributions. These components are the result of the VPCA, and 

often represent a mixture of individual in-water constituents. 

 

VPCA Spectral Signature Identification 

 The forward, stepwise multiple regression of spectral signatures against the standard spectral 

library resulted in mixtures of pigments as the best fit for each component. Figure 3 shows the 

spectral signatures of each component extracted from the GF/F dataset at 10 nm as well as at 

MODIS resolution (Figure 3A – 3D) along with the components from the four MODIS Aqua 

images acquired on 21, 23, 27 & 28 July 2015 (Figure 3E - 3H). The spectral signature of each 

MODIS Aqua image is averaged by pattern (spectral shape) and shown with the individual image 

components. The average pattern is shown with the identification spectra ‘fit’, which is the 

weighted combination of the matched standard spectra from the forward stepwise multiple 
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regression (Figure 3I – 3L). VPCA decomposition of the in-lab measured reflectance spectra 

(GF/F dataset) of the water samples collected by the KSU field team yielded four primary 

components similar to the components extracted from the MODIS images. The GF/F spectral 

signature averaged to MODIS band resolution (GF/FMODIS; orange) exhibit some differences in 

spectral features, but when we regress the GF/FMODIS spectral signature against the average 

MODIS image spectral signature for each pattern, the R-values for patterns A, B, & C are 

statistically correlated at p <0.05 (Table 4). Therefore, the GF/F sample component identification 

for GF/F sample patterns A, B & C are identical to the MODIS pattern A, B, & C identification, 

within error. The GF/F sample spectral pattern D did not correlate significantly with MODIS 

spectral pattern D. These spectral patterns were identified independently as is discussed further 

below. 

 

The identification of each VPCA component is often, though not always, a mixture of pigments, 

minerals and degradation products representing various in-water constituents. The correlations 

may be negative or positive, indicting a positive or negative correlation with that constituent. The 

association of each pixel reflectance spectra to the component spectral signature is described by 

the spatial distribution of each component. In these figures, the red/warm colored pixels increase 

with positively correlated constituents, and (if applicable) the blue/cool colored pixels increase 

with negatively correlated constituents.  

 

The spectral signature results of the VPCA spectral decomposition of the 10 nm resolution 

hyperspectral GF/F sample dataset (blue) is plotted for comparison purposes (figures 3A – 3D). 

The hyperspectral nature of the 10 nm GF/F dataset can be used to provide additional 
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information to validate the identifications determined from the multispectral data. Increased 

spectral information provides greater insight for determining the CPAs captured by this field 

data. However, some distinguishing spectral peaks, such as the 620-630 nm absorption of the 

cyanobacterial pigment phycocyanin (Bryant, 1981; Sathyendranath et al., 1987), are lost when 

the GF/F 10 nm dataset is resampled to multi-spectral MODIS bands, in particular between 550-

670 nm, were MODIS does not have a high SNR band. 

 

The MODIS spectral signature pattern A (Figure 3E) represents a negative correlation with 

hematite and a positive correlation with peridinin and/or myxoxanthophyll. Peridinin is a 

dinoflagellate pigment (Song et al., 1976), while myxoxanthophyll is a cyanobacterial pigment 

(Paerl et al., 1983). The ANOVA results for the forward stepwise regression of the average 

pattern A spectral signature are shown in Table 5. The average image identified as a combination 

of hematite and peridinin, however, the pattern A spectral signature for the first day in the series, 

the 21 July 2015 MODIS Aqua image, is identified as a combination of hematite and 

myxoxanthophyll (Table 5). This component likely represents a combination of dinoflagellates, 

cyanobacteria, and iron-oxide rich, suspended sediment comprising the CyanoHAB signal. It is 

worth noting that dinoflagellates and cyanobacteria, such as Planktothrix, are known to be reside 

in the western basin (Watson et al., 2016), and to be adapted to living in turbid waters (Oberhaus 

et al., 2007; Scheffer et al., 1997).  

 

The MODIS image pattern B spectral signature (Figure 3F) represents a mixture of goethite, 

smectite, hematite, and phaeophorbide a (the end member chl a degradation product). The 

ANOVA results (Table 6) for most of the images and the average pattern spectral signature 
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indicate that a sediment mixture of goethite & smectite are present, while the results for the 

earliest day in the series, 21 July 2015, indicate the presence of hematite and phaeophorbide a. 

This component, therefore is a sediment and phaeophorbide a laden constituent, with a 

composition that may vary with time, and suggests the presence of chl a that has largely 

degraded.  

 

Pattern C (Figure 3G) represents a positive correlation with hematite and a negative correlation 

with the chl a degradation product, chlorophyllide a (Table 7). This component is thus comprised 

of different sediment and chl a degradation products than pattern B. The potential ambiguity in 

differentiating chl a from chlorophyllide a (Figure 2C) suggests that this component may 

indicate the presence of chl a at varying stages of degradation. Furthermore, the identification of 

the pattern C spectral signature was consistent across all four images and the average spectral 

signature, suggesting that the optical signal from hematite and chl a degradation products was 

not temporally varying throughout the study. 

 

While MODIS pattern D and  GF/FMODIS pattern D are similar in their spectral shape, the two are 

not statistically correlated. These components represent a small fraction of the variance in the 

MODIS image (1.8%), although a larger percent of variance in the GF/F samples (14.6%). In 

addition to the partitioning of variance of these two datasets, the physical filtering process, which 

removes all material smaller than 0.7 µm from the GF/F samples, may explain the difference in 

variance between these last components and their lack of statistical correlation. The small 

fraction of variance places these components close to the noise floor, and the sparse multispectral 

data likely makes their identification more difficult relative to hyperspectral data. MODIS 
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pattern D (Figure 3H) represents a positive correlation with the Cryptophyta algae, a member of 

the kingdom Chromista (Algaebase.org; Table 8). The GF/FMODIS pattern D (Figure 3D) 

represents a positive correlation with both hematite and phaeophytin a, a degradation product of 

chl a (Table 8). Given the uncertainty in the data this pattern could represent either of these two 

potential identifications. In the section on in situ validation we compare the spatial patterns of 

these components to see if they are consistent or unique in spatial distribution. Given the VPCA 

orthogonality constraint, a common spatial pattern would suggest these two components 

represent the same in-water constituents while a unique one would indicate that they are likely 

distinct components.  

 

The identification results from patterns A – D suggest that the first image in the series, acquired 

on 21 July 2015, may represent slightly different dominant compositional make-up than the latter 

three days, which span the time period from 23 – 28 July, 2015. This is consistent with observed 

riverine discharge from the Maumee, Sandusky & Portage Rivers to the WBLE, which were 

decreasing during this week - long time period (https://waterdata.usgs.gov/nwis). Some 

differences between the results from the GF/FMODIS and MODIS image VPCA spectral 

decompositions are to be expected due to several issues: the water samples were collected 

exclusively in Sandusky Bay and the nearshore waters just east of Sandusky Bay in Lake Erie 

while the MODIS image analysis includes the reflectance signal from the entire Lake. However, 

analysis of a subsampled image that matched the geographic distribution of the samples 

produced similar results to the full image analysis presented here.  The field collection dates are 

also not identical to the MODIS image acquisition dates, but differ by +1 day.  Furthermore, the 

differences in scale between the MODIS image pixel samples and the GF/F samples are 
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significant in that the GF/F samples represent a 1 L, filtered point sample, with only particulate 

matter ≥ 0.7 µm captured, and all water removed by the physical filtering and drying process, 

while the MODIS pixels represent an integrated signal from 1 km2 of Lake Erie, acquired at a 

height of 705 km, with an atmospheric correction applied to produce a surface reflectance value. 

Due to physical filtration, the GF/F samples do not include CDOM as a constituent because the 

dissolved CDOM is lost during the filtering process. CDOM is an important constituent in the 

Great Lakes (Becker et al., 2009; Binding et al., 2012, 2008; Moore et al., 2017), and is thus 

incorporated in the MODIS reflectance spectra. However, despite all these spatial and temporal 

differences, the spectral signatures of the MODIS image and the GF/F field dataset are 

remarkably similar and statistically significant, indicating a consistent CPA presence. The 

similarities between the two VPCA spectral decomposition results based on independent 

observations from different instruments are remarkable, because the VPCA method removes 

extraneous stochastic noise, and partitions unrelated signals into different components based on 

their correlation structure. The method is relatively insensitive to atmospheric errors and 

addresses the mixed pixel problem (Ortiz et al., this issue, 2017, 2013).  

 

In situ validation 

The component scores are the projection of the derivative-transformed data onto the principal 

component loading axis, and as such provide a measure of the amount of signal explained by 

each component loading. The component score indicates the relationship between each pixel and 

the component spectral signature, creating a spatial distribution for each component. A value of 

zero reflects a mean contribution to the derivative reflectance spectra from that component, while 

positive or negative values indicate standard deviations greater than or less than the mean of the 
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original derivative reflectance spectra for each component spectral signature. We used a simple 

linear regression to quantify the relationship between the 21 July 2015 MODIS image VPCA 

score values and the 20 July 2015 GF/F VPCA score values. These two near-concurrent dates 

provided the 7 clear pixels in the MODIS image corresponding to the KSU sampling locations. 

There were no cloud-free pixels available for the 27 July 2015 image at the KSU sample site 

locations, although the image is sufficiently clear at other locations to process. We regressed the 

21 July 2015 MODIS score values against the 20 July 2015 GF/F score values for each spectral 

signature. For these four regressions, R-crit = 0.754 (df =5, p=0.05). Despite the slight temporal 

offset, the R-value for pattern A is 0.73; for pattern B the R-value is -0.80; for pattern C the R-

value is 0.88; and for pattern D the R-value is 0.77 (Figure 4). These results indicate very good 

statistically significant agreement between the in situ measurements and remote sensing image 

analysis for patterns B, C, & D, and provide confidence that the remote sensing analysis 

partitions the in-water reflectance signal as effectively as the analysis of spectra measured in the 

lab from in situ water samples. As noted above, there is some ambiguity in the identification of 

pattern D, although the correlation of the spatial patterns for the GF/FMODIS and MODIS VPCA 

scores suggest they represent the same mixture of constituents. Carefully planned field sampling 

campaigns, designed to coordinate with satellite overpasses can increase the number of location 

matchups used for validation. Newer satellites, with a smaller pixel resolution, such as the 

European Space Agency’s (ESA) Sentinel-3A Ocean and Land Color Instrument (OLCI) (300 m 

ground resolution) also have the potential to increase sample size, particularly if field sites are 

located close together.  
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Four of the lab-measured parameters collected by CIGLR on 27 July 2015 for Secchi depth, 

beam attenuation, in-water chl a, and in-water phycocyanin were regressed against the VPCA 

spectral decomposition results of the MODIS Aqua image acquired on 27 July 2015 and found to 

yield significant results. We extracted the component score values at each CIGLR sampling 

location from each component pattern map. The spectral signature results from this individual 

image analysis matched the patterns described previously. The regression of the eight VPCA 

Pattern C score values from 27 July 2015 against the CIGLR measured chl a values (Figure 5B) 

yields an R-value of 0.88 (df=6, p<0.05), indicating statistically significant agreement between 

the in-water data and remote sensing analysis results, particularly when the data were collected 

on the same day and has closer temporal coincidence than the KSU GF/F sample comparisons 

presented earlier. However, some of the slightly weaker fit observed to the lab measurements 

could also result from the filtration process. Figure 5A maps a close-up of the sampling locations 

on the VPCA spatial distribution of pattern C in the WBLE, which represents a mixture of 

hematite and chl a degradation products calculated based on data from the entire lake. These 

results show that the two independent sets of regional validation data, the 20 July 2015 GF/F 

samples from Sandusky Bay (Figure 4) and the 27 July 2015 CIGLR samples (Figure 5) from the 

WBLE correlate well with the closest temporal MODIS image match, despite the fact that the 

MODIS image VPCA spectral decomposition was conducted on the entire image, which includes 

both Lake Erie and Lake St. Clair. These results document the effectiveness of the VPCA 

spectral decomposition method to extract signal, such as chl a, despite the range of optical 

conditions across the lake.  
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The red colors in Figure 5b indicate that the pixels have a higher proportion of sediment than 

chlorophyllide a, while the blue colors in Figure 5b indicate pixels where the mixture is higher in 

chlorophyllide a. In all pixels, chlorophyllide a contributes to the signature of the VPCA 

component, suggesting that chl a is present, or present in some stage of degradation, given the 

potential ambiguity the spectral signature identification as chl a or chlorophyllide a (Figure 2C). 

The distribution of sampling sites spans a range of scores nearly equal to the full observed range, 

capturing the variability of this component, although intermediate values are somewhat under-

sampled given the static sampling points and the geographic extent of the component scores on 

this date. Despite the limitation of sample size, these results indicate that VPCA spectral 

decomposition results from remote sensing data are significantly correlated with the in water 

measurements. 

 

GF/F component spatial distribution 

Our filtered field sample measurements (GF/F sample spectra) indicate that the spatial 

distribution of each component changes from day to day, and provides quantitative insights into 

the temporal evolution of the CPAs that each component represents, as well as changes in the 

composition of the CyanoHAB over time. The GF/F pattern A spectral signature (Figure 6) 

represents sediment and the cyanobacterial pigment myxothanthophyll. The hematite signal has a 

negative correlation, so negative values in the spatial distribution plots (Figure 6) correspond to 

higher than average concentration of hematite in this component, while the correlation with 

myxothanthophyll & peridinin pigments are positive. During the month of June the spatial 

distribution of CPA at all sites is varied, highlighting the rapidly changing conditions within a 

relatively small range of temporal and spatial samples. This month was also exceptionally rainy, 
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and the influx of water, sediment, and debris could have delayed the initiation of the 2015 

CyanoHAB. On 6 July 2015 there was a large amount of sediment in the water, particularly in 

the western end of the Bay near Muddy Creek, creating highly turbid conditions [9 July 2015 

NOAA HAB Bulletin] Additionally, there was an unusual amount of woody debris in the water 

noted during the weekly sample collection.  Beginning on 6 July 2015, the spatial distribution of 

GF/F component A followed a pattern of higher predicted concentration of Planktothrix 

cyanobacteria in Sandusky Bay and a lower concentration outside the Bay, inferred from the 

correlation with myxothanthophyll. These results point out the utility of VPCA spectral 

decomposition of optically complex images early in the bloom season before NOAA CI 

predictions are initiated. The NOAA HAB Monitoring work typically shifts from prediction to 

bulletin in mid-July, when streamflow and sediment content in the Maumee River plume 

decreases, creating conditions in which the Microcystis bloom can expand in Western Basin of 

Lake Erie. 

 

GF/F Pattern B spectral signature (Figure 6) indicates the presence of sediment and the chl a 

degradation product, phaeophorbide a when these component scores are positive. This 

component generally increases from Sandusky Bay into Lake Erie (figure 6) on each day 

sampled. This trend likely reflects the movement of the early season, precipitation driven, 

sediment fluxes from the Sandusky River towards Lake Erie. On 27 July 2015 the signal from 

this component is more evenly distributed across the sampling transect, indicating that the heavy 

sediment input had been dispersed by this time. 
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GF/F pattern C (Figure 6) represents the chl a degradation product chlorophyllide a, and the 

mineral hematite. Positive scores have a higher sediment to chlorophyllide a  proportion, while 

negative scores indicate the opposite – a higher chlorophyllide a to sediment proportion.  Two 

distinct trends are visible in the scores associated with this component (figure 6). On 8 and 15 

June 2015 as well as 6 July 2015 the scores generally increase from Sandusky Bay to Lake Erie. 

On 22 and 28 June 2015 as well as 13 & 20 July 2015 the signal from this component is much 

higher at the furthest west sites: SND 4 & SND 6, drops in the outer Bay, and increases along the 

transect into Lake Erie. This result indicates that chlorophyllide a is present in Sandusky Bay and 

coastal Lake Erie throughout the sampling season  although suspended sediment sometimes 

becomes the dominant optical signal. 

 

The spectral signature for pattern D (Figure 6) represents a combination of hematite and the chl a 

degradation product, phaeophytin a, when the component scores are positive. This signal 

fluctuates over the course of the sampling season, with a neutral contribution on 8 and 15 June 

2015, with the strongest signal from this component within inner Sandusky Bay. On the other 

sampling days, the signal from this component has a weaker signal in the samples taken from 

sites in the outer Bay than from the inner Bay or Lake Erie. While this mixture of CPAs is 

similar to that of Pattern C, the chl a degradation products are the result of different pathways. 

Chlorophyllide a forms due to  phytol chain removal through hydrolosis, while phaeophytin a 

arises from Mg2+ ion removal through demetalation (Hendry, 1982). These two chl a degradation 

products are spectrally different, but both represent the decay of chl a, albeit through different 

processes. For our purposes, these pigments indicate the presence of older chl a in the water 

column, and therefore the two degradation products can exist in the same water sample, but 
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likely in different proportions. Further investigation of the spatial distribution of these processes 

would require additional study, but future work could shed light on the conditions favorable for 

each degradation pathway, providing useful information regarding the spatial distribution of 

various chl a degradation rates. 

 

MODIS component spatial distribution 

Figure 7 shows the spatial distribution of component patterns for the VPCA spectral 

decomposition of the individual day images acquired on 21, 23, 27, & 28 July 2015. In all 

images, the continuum from positive – to – negative values for individual pixels is shown as a 

red – to – purple color scheme. Color bars are included for each component’s spatial distribution. 

 

The red areas in Figure 7A, 7E, 7I, and 7M indicate where the in-water reflectance signal is 

increasing with pattern A, a mixture of cyanobacteria and dinoflagellates. This is within the 

Maumee Plume, in the southern part of Maumee Bay, and eastward to the Lake Erie Islands, into 

Sandusky Bay, which is the area where, according to the Experimental Lake Erie Harmful Algal 

Bloom Bulletin released on 15 July 2015, the 2015 bloom initiated around 11 July 2015 

(https://www.glerl.noaa.gov), and is present on the four days included in this analysis. The CPAs 

described by pattern A are also present in Sandusky Bay, and could represent Planktothrix and 

dinoflagellates in the turbid water present in the persistent Sandusky Bay bloom. This component 

captures a range of variability in the individual images from 38% to 47% of the image variance. 

The daily images indicate the temporal change of this component over the course of a week. On 

21 July 2015, this component is located in a large area toward the western end of the Maumee 

Plume, and a long streamer extending from the shore to the Lake Erie Islands. The two areas 
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begin to combine on 23 July 2015 and by 28 July 2015 this component has expanded and 

increased northward and eastward.  

 

The pattern B spectral signature representing clay sediments and the chl a degradation 

phaeophorbide a, found in the discharge plumes of the Detroit River, the Portage River, and 

streams entering Lake Erie from the Ottawa National Wildlife Refuge, in Lake St. Clair, and 

along the northern shore near Long Point, ON (Figures 7B, 7F, 7J, & 7N). This component 

explains 25% to 33% in the individual image variance on a day by day basis. This component is 

largely absent from the Maumee River Plume in all images, but is a clear indicator of the input 

from Lake St. Clair and the Detroit River on all days. On 28 July 2015 this component highlights 

all the input river plumes, and is present even in the Maumee River plume (Figure 7N).  

 

Component pattern C is a sediment and chlorophyllide a constituent, and is located in the 

Maumee River Plume, along the western shore of Maumee Bay, as well as in Sandusky Bay. 

This could represent the signal from the degradation of the very early CyanoHAB bloom (15 

July 2015 HAB Bulletin) that began on 11 July 2015 in the western-most part of Maumee Bay, 

but which drifted offshore to the east by 21 July 2015 (HAB Bulletin). This component explains 

21% to 28% of the variability in the individual image analyses. The red areas where suspended 

sediment is more prominent than degradation products in the overall mixture, are located further 

west in the mouth of Maumee Bay on 21 & 23 July 2015 (Figures 7C & 7G) and are distinct 

from the area of cyanobacteria and dinoflagellates indicated by pattern A (Figures 7A & 7E). 

These two signals (pattern A & pattern C) begin to overlap on 27 July 2015 (Figures 7I & 7K), 

and overlap even more in area on 28 July 2015 (Figures 7M & 7O). While not all this area is 
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addressed  by the NOAA CI (29 July 2015 HAB Bulletin), the area in the Maumee plume along 

the southern shore of Maumee Bay where the CPAs associated with pattern C are located is 

identified as cyanobacteria. Our results suggest that this area is older CyanoHAB, where the chl 

a signal has begun to degrade as the CyanoHAB shifts to the east. The blue areas in all the 

images, which indicate an in-water signal where chlorophyllide a is prominent over the hematite 

signal in the overall mixture, are similar to the areas indicated by pattern B (Figures 7B, 7F, 7J, 

& 7N). 

 

The pattern D spectral signature is found along the southern coast of Lake St. Clair and Lake 

Erie. This cryptophyta component captures about 1.6% to 4% of the variance in the individual 

images (Figures 7D, 7H, 7L, and 7P). The spatial distribution of this component is 

complementary to the distribution of pattern A, which is consistent with observations because 

pattern D represents in-water constituents typically associated with algal blooms in Lake Erie. 

Notably, on 28 July 2015, Pattern D is present as a border for the area of the bloom identified as 

Pattern A (Figure 7P). Additionally, the filamentous swirl of pattern D extending up towards 

Point Pelee on both 27 & 28 July 2015 (Figures 7L and 7P) is quite visible in the NOAA CI 

image published in the 29 July 2015 HAB Bulletin (Figure 8). 

 

We can compare our results to the published NOAA CI 

(https://www.glerl.noaa.gov//res/HABs_and_Hypoxia/) as a weighted average of the components 

that include a signature within the red edge. This includes all four extracted components 

presented in this study (Figure 3E – 3H). Qualitative comparison of the NOAA CI calculated 

from the same 28 July 2015 MODIS image (29 July HAB Bulletin) with the constructed CI, 
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based on the four orthogonal spectral signatures, indicates that the KSU VPCA spectral 

decomposition extracts a more detailed distribution of CPAs than the NOAA CI. The spatial 

distribution of pattern A (Figure 3I) and the CI index identify the Maumee Plume as 

cyanobacteria, likely Microcystis, in the WBLE (Figure 8). However, when all 4 components are 

included in the constructed CI (Figure 8), the heterogeneity of the signal shown in the NOAA CI 

in the WBLE is more closely matched. This result suggests that the KSU spectral decomposition 

method identifies CyanoHAB  related constituents with greater specificity than the NOAA CI, 

and warrants further investigation. 

 

Conclusion: 

VPCA Spectral decomposition of derivative reflectance spectra acquired from in situ samples 

and by satellite sensors provide a powerful tool for determining the composition and distribution 

of CPAs in Lake Erie, and other optically complex water bodies. Hyperspectral ground data can 

be used to help identify the signals extracted from multispectral satellite data sets as was 

successfully demonstrated in this project. We identified four distinct patterns of CPAs and noted 

the temporal change in composition and distribution of each identified CPA. The spatial 

distribution of VPCA patterns, in conjunction with the identification of loadings indicate the 

distribution of algae, cyanobacteria, sediment, and degradation products of chl a during the early 

2015 CyanoHAB season. We also highlighted that the Detroit River plume has a different set of 

constituents than that of the CyanoHAB-associated signals from Maumee River and Sandusky 

River to the south.  
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This analysis was conducted using images acquired after a particularly stormy spring, with high 

levels of discharge from the Maumee, Detroit, and Sandusky Rivers, as well as frequent high-

wind storm events that re-suspend sediment in the shallow WBLE, enhancing the contribution of 

sediment to the visible reflectance signature. The spectral decomposition method effectively 

partitioned the sediment signal in all images we analyzed. These images capture the beginning of 

the 2015 CyanoHAB, including a green algae signature, and our analysis supports this 

assessment. The correlation of all spectral signature patterns with lab-measured water samples 

from 21 July 2015, and the strong correlation of pattern C with in situ chl a measurements on 27 

July 2015 supports the conclusion that this method effectively partitions the optical signal from 

remote sensing imagery.  

 

The KSU spectral decomposition method has the potential to contribute to future CyanoHAB 

monitoring and assessment efforts, as it can guide field season planning for sampling locations 

and yields information about the distribution of the mixtures of constituents present and how 

they change through time. Moreover, enhanced coordination of in situ measurements and remote 

sensing datasets has the potential to improve imagery analysis as well as provide powerful 

monitoring tools for researchers and water management authorities alike. 
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Table 1. Spectral Library contents analyzed.       
Algal and 

Cyanobacterial groups 
(9) 

Primary and accessory 
pigments (27) 

Pigment degradation 
products (6) 

Minerals and mineral 
mixtures (41) 

Bacillariophyceae  
(2 spectra) α-Carotene  Chlorophyllide-a  Actinolite (2 spectra) 

Chlorophyceae  
(2 spectra) allophycocyanin  Chlorophyllide-b  Anhydrite (2 spectra) 

Cryptophyta  Alloxanthin  Phaeophorbide-a  Calcite (2 spectra) 
Cyanobacteria  

(2 spectra) Antheraxanthin  Phaeophorbide-b  Calcite+Dolomite  

Dinophyta  β-carotene  Phaeophytin-a  Chlorite 

Haptophyta  Carotenoids Phaeophytin-b  
Chlorite+Smectite  

(2 spectra) 

  
Chlorophyll a + 

carotenoids    Diatomite 

  
Chlorophyll a  

(3 spectra)   Dolomite 

  
Chlorophyll b  

(2 spectra)   Dolomite (Ferroan) 

  Chlorophyll c    Epidote 

  Diadinoxanthin    Glauconite 

  Dinoxanthin    Goethite  

  Echinenone    gypsum (2 spectra) 

  Fucoxanthin    Hematite  

  Lutein    Illite (5 spectra) 

  Myxoxanthophyll    Kaolinite (2 spectra) 

  Neoxanthin    Kaolinite+Hematite  

  Nostoxanthin    Muscovite (2 spectra) 

  Peridinin    Natrolite 

  
Phycocyanin  
(2 spectra)   Opal  

  Phycoerythrin    Opal Hyalite  

  Trans-neoxanthin    Pyrolusite 

  Violaxanthin    Quartz (3 spectra) 

      Sanidine Feldspar 

      Smectite (2 spectra) 

      Smectite+Chlorite+Illite  

      Sphalerite 

      Tremolite  
 
  



 46

Table 2. Locations of field sites where CIGLR collected water samples for analysis. Dates indicate the 

datasets used in this study. 

Site Name Latitude  
(°N) 

Longitude 
(°W) 

Date Sampled 
(2015) 

WE2 41.7648 -83.3314 6/8; 7/20; 7/27 
WE4 41.8259 -83.1944 6/8; 7/20; 7/27 
WE6 41.7123 -83.3781 6/8; 7/20; 7/27 
WE8 41.8336 -83.3637 6/8; 7/20; 7/27 
WE12 41.7036 -83.2581 6/8; 7/20; 7/27 
WE13 41.7441 -83.1381 7/20; 7/27 
WE14 41.7177 -83.0148 7/20; 7/27 
WE15 41.6177 -83.0124 7/27 
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Table 3. Field site locations and dates where KSU/BGSU collected in situ data. 

 Samples collected in 2015 on: 6/8, 6/15, 6/2, 6/29, 7/6, 7/13, 7/20, and 7/27. 

 

Site Name Latitude 
(°N) 

Longitude 
(°W) 

Sandusky Bay 
SND 4 41.453333 -82.960767 
SND 6 41.457300 -82.898655 
SND 2 41.479817 -82.782867 

SND 1 41.477367 -82.739783 
EC 1163 41.469000 -82.715000 

Central Basin Costal Zone 
Bells 41.511667 -82.657967 
CBCZ 2 41.442802 -82.630832 
CBCZ 3 41.404250 -82.561904 
CBCZ 4 41.386335 -82.513187 
CBCZ 5 41.434531 -82.373920 
CBCZ 6 41.456671 -82.217642 
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Table 4. Pearson’s Correlation for GF/FMODIS VPCA spectral  

signature against average MODIS VPCA spectral signature. * Denotes significant correlation with R-crit 

= 0.754 (df = 5, p = 0.05) , 

VPCA Spectral Signature Pattern R-value 
Pattern A 0.90* 
Pattern B 0.90* 
Pattern C 0.85* 
Pattern D 0.57* 
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Table 5. ANOVA results for the forward, stepwise multiple linear regression of the pattern A for 

the average MODIS Aqua loadings and the 21 July 2015 MODIS Aqua image spectral signatures 

against standard spectra. 

 
 

 

 

Pattern A – average MODIS spectral signature  

R R-Squared Adjusted R-
Squared 

S F p-value   

0.96 0.92 0.88 0.33 24.00 0.00591   

              

Constituent Coeff. Standard 
Error 

Beta t p-value > 
t 

VIF 

hematite -0.91 0.14 -0.91 -6.378 0.0031 1.07 

peridinin  0.61 0.14 0.61 4.25 0.01306 1.07 

       

Pattern A – 21 July 2015 spectral signature 

R R-Squared Adjusted R-
Squared 

S F p-value   

0.97 0.94 0.92 0.27 36.72 0.00267  

       

Constituent Coeff. Standard 
Error 

Beta t p-value > 
t 

VIF 

hematite -0.86 0.11 -0.86 -7.50 0.00169 1.02 

myxo-
xanthophyll  

0.61 0.11 0.61 5.31 0.00602 1.02 
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Table 6. ANOVA results for the forward, stepwise multiple linear regression of the pattern B for 

the average MODIS Aqua loadings and the 21 July 2015 MODIS Aqua image spectral signatures 

against standard spectra. 

 

 

 

Pattern B – average MODIS spectral signature 

R R-Squared Adjusted R-
Squared 

S F p-value   

0.97 0.94 0.91 0.28 34.11 0.00307   

              

Constituent Coeff. Standard 
Error 

Beta t p-value > 
t 

VIF 

smectite 0.72 0.12 0.72 5.80 0.00438 1.13 

geothite  -0.44 0.12 -0.44 -3.51 0.0245 1.13 

       

Pattern B – 21 July 2015 spectral signature 

R R-Squared Adjusted R-
Squared 

S F p-value   

0.99 0.98 0.97 0.15 129.72 0.00023  

       

Constituent Coeff. Standard 
Error 

Beta t p-value > 
t 

VIF 

hematite -0.79 0.06 -0.79 -12.49 0.00024 1.05 

phaeophorbide-a  0.44 0.06 0.44 6.97 0.00222 1.05 
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Table 7. ANOVA results for the forward, stepwise multiple linear regression of the pattern C for 

the average MODIS Aqua loading spectral signatures against standard spectra. 

 

 

 

Pattern C – average MODIS spectral signature 

R R-Squared Adjusted R-
Squared 

S F p-value   

0.96 0.92 0.88 0.33 24.75 0.00559   

              

Constituent Coeff. Standard 
Error 

Beta t p-value > 
t 

VIF 

hematite 0.95 0.13 0.95 6.85 0.00237 1.03 

chlorophyllide-a  -0.38 0.13 -0.38 -2.79 0.04896 1.03 
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Table 8: ANOVA results for the forward, stepwise multiple linear regression of the pattern D for 

the average MODIS Aqua loading spectral signatures and the GF/F (MODIS resolution) spectral 

signature against standard spectra. 

 

 

Pattern D – average MODIS spectral signature 

R R-Squared Adjusted R-
Squared 

S F p-value   

0.75 0.57 0.48 0.71 6.75 0.04834   

              

Constituent Coeff. Standard 
Error 

Beta t p-value > 
t 

VIF 

cryptophyta 0.75 0.29 0.75 2.59 0.04834 1. 

       

Pattern D – GF/F spectral signature 

R R-Squared 
Adjusted R-
Squared 

S F p-value 
 

0.96 0.93 0.90 0.30 31.17 0.00363  

       

Constituent 
Coeff Standard 

Error 
Beta t p-value > 

t 
VIF 

hematite 0.88 0.12 0.88 7.02 0.00216 1.05 

phaeophytin-a 0.63 0.12 0.63 5.05 0.00719 1.05 



 53

Figure Captions 

Figure 1. A) Bathymetry map of Lake Erie, delineating the Western, Central, and Eastern Basins. 
Available from NOAA (Lake Erie and Lake Saint Clair: ngdc.noaa.gov) B) Field sampling 
locations. The 11 KSU sites in Sandusky Bay and along the southern coast of the Central Basin 
are shown in inset, as well as the sites sampled by CIGLR. These field sampling sites were 
sampled weekly through the summer and fall 2015.  
 
Figure 2. A) Standardized derivative reflectance spectra of peridinin and myxoxanthophyll at 10 
nm resolution and at MODIS band resolution. B) Standardized derivative reflectance spectra of 
the minerals goethite, hematite, and smectite at 10 nm resolution and at MODIS band resolution. 
C) Standardized derivative reflectance spectra of chl a and chl a degradation products 
phaeophytin a, chlorophyllide a, and phaeophorbide a, at 10 nm resolution and at MODIS band 
resolution. Note that distinguishing peaks in the spectra are lost when resolution is re-sampled, 
but that there are differences between pigments and minerals that allow for identification of 
specific constituents. 
 
Figure 3. VPCA spectral decomposition results for the GF/F lab-measured reflectance spectra 
and MODIS Aqua images acquired on 21, 23, 27 and 28 July 2015. Spectral signature patterns 
extracted by VPCA spectral decomposition of the GF/F dataset (blue) at 10 nm resolution; the 
GF/F dataset (orange) at MODIS band resolution (A-D). Figures E-H show the MODIS image 
spectral signature patterns, with the average signature shown in black. Identified CPA 
represented by each component is listed below. 
 
Figure 4. Regression of GF/F score values on 20 July 2015 against the 21 July 2015 MODIS 
Aqua image score values at KSU sampling locations. R-crit = 0.754 (df=5, p=0,05). A) spectral 
signature pattern A; R-value = 0.73. B) spectral signature pattern B; R-value = -0.80. C) spectral 
signature pattern C; R-value = 0.88. D) spectral signature pattern D; R-value = 0.77. 
 
Figure 5. A) 27 July 2015 MODIS image score value for pattern C at the NOAA CIGLR 
sampling locations plotted against in situ chl a measured by NOAA CIGLR on 27 July 2015. R-
value = 0.88 (df=6, p=0.05). B) Location of NOAA CIGLR sampling locations plotted on the 
spatial distribution of the 27 July 2015 MODIS image pattern C. 
 
Figure 6. VPCA spectral decomposition results for the GF/F dataset. Points marked with a closed 
circle are field sampling sites in Sandusky Bay (SND), open circles denote field sampling sites 
along the southern central basin coast (CBCZ). Pattern A spectral signature and spatial 
distribution. Pattern A represents sediment, dinoflagellates, and cyanobacteria. Pattern B spectral 
signature and spatial distribution. Pattern B represents smectite & goethite and chl a degradation 
products. Pattern C spectral signature and spatial distribution. Pattern C represents hematite and 
chl a degradation products. Pattern D spectral signature and spatial distribution. Pattern D 
represents hematite and phaeophytin a. 
 
Figure 7. Spatial distribution of each spectral signature pattern for the four MODIS Aqua images 
acquired on 21, 23, 27 and 28 July 2015. Cyanobacteria and dinoflagellates are present in the red 
areas of pattern A (panels A, E, I, and M). The red areas of pattern B indicate sediment laden 
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riverine discharge is present (panels B, F, J, and N). Pattern C (panels C, G, K, and O) highlight 
the presence of hematite and chlorophyll degradation products. Red areas in pattern D (panels D, 
H, L, and P) indicate the presence of cryptophytes.  
 
Figure 8: The ‘constructed CI’ based on the weighted addition of the 4 VPCA patterns extracted 
from the 28 July 2015 MODIS Aqua image. Shown here in comparison to the NOAA CI 
calculated from the same image. The NOAA CI figure was taken from the publicly available 
HAB bulletin (https://www.glerl.noaa.gov//res/HABs_and_Hypoxia/) hosted by NOAA-GLERL. 




















